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Abstract
This paper presents the first large-scale measurement study on
cross-chain bridges.We collected the datasets of 543,576 cross-chain
transactions from four bridges, along with 1,076,972 related transac-
tions from 11 blockchains in 2023. Using the datasets, we conducted
an in-depth analysis of cross-chain transactions, focusing on their
basic characteristics and costs. We also identified inconsistencies
between bridge and blockchain data and performed a cluster analy-
sis to uncover activities in cross-chain transactions. Our findings
revealed 308 transactions with ledger inconsistencies that could
potentially lead to asset losses. We identified four types of cross-
chain activities, including 11 arbitrage bots that earned over $267k
in profits within 10 months, and a liquidity pool attack that caused
more than $570k in losses and led to a two-month suspension of
bridge services. We tracked 24 known malicious addresses involved
in cross-chain bridge activities and found 82 related transactions
used for transferring illicit funds. Additionally, we uncovered six
previously unreported malicious addresses.
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1 Introduction
In recent years, there has been a surge in the popularity of various
widely-used blockchain applications. These applications enable
users to transfer tokens and perform computations using smart
contracts, which are self-executing programs that typically function
as the backend for Decentralized Finance (DeFi) Applications on
blockchains (e.g., Ethereum). As of Q1 2024 [17], the Total Value
Locked (TVL) in DeFi has reached $175 billion; the userbase has
grown to seven million Daily Unique Active Wallets (UAW).

Although blockchain applications are widely used, their isola-
tion prevents direct communication or data sharing across chains,
hindering cross-chain token transfers. To address this, cross-chain
bridges have been developed to enable interoperability between
blockchains [54]. For example, Allbridge [2] enables the transfer
of stablecoins between various blockchains, whileWormhole [66]
utilizes a decentralized cross-chain messaging protocol to allow for
the seamless transfer of assets and data between blockchains. As
of September 2024, cross-chain bridges hold a TVL of around $29
billion [21]. Due to the growing popularity, low maturity, and high
TVL of cross-chain bridges, bridges increasingly attract the atten-
tion of attackers. For instance, in January 2024, hackers exploited
Orbit Chain, a cross-chain platform, stealing around $81 million in
tokens [31]. Financial damages from attacks on cross-chain bridges
amounted to $2.8 billion as of May 2024, accounting for 47% of the
overall losses from all DeFi attacks [20].

Existing studies primarily focus on cross-chain technologies [12,
38, 55, 57, 59, 63, 67, 74] and security risks [25, 26, 32, 75, 76]. while
blockchainmeasurement studies [33, 39, 61, 73, 78] provide valuable
insights into on-chain transactions. In this paper, we perform the
first large-scale measurement study on cross-chain bridges. We
first collect bridge transaction data from their official APIs, then
we collect transaction information from the corresponding source
chain and destination chain. The data collection process yields
datasets of four bridges (Allbridge, Connext, Orbit, Wormhole)
with 543,576 cross-chain transactions and 11 chains with 1,076,972
on-chain transactions. The TVL of the four bridges exceeds $2.07
billion, and the TVL of the 11 chains exceeds $104.52 billion [18].
Research Questions. Using the large-scale dataset of cross-chain
transactions, we aim to answer the following research questions.
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• RQ1: (Cross-chain Transaction Costs) What are the time,
gas, and transfer costs in cross-chain transactions, and how do
they impact the efficiency and reliability of bridges? (§5)
• RQ2: (Ledger Inconsistencies) What are the inconsistencies
between cross-chain bridges and the underlying blockchains,
and what are the causes of those inconsistencies? (§6)
• RQ3: (Cross-chain Activities)What activities took place in
cross-chain transactions, particularly any unusual patterns? (§7)

Findings.We have the following major findings.
• While most transactions completed within within a few minutes
to three hours and only cost a few US dollars, we also observed
anomalies. Connext and Wormhole had 83 and 26 transactions,
respectively, with time costs exceeding one month; the maxi-
mum one exceeds 200 days. Additionally, 83 transactions had
high transfer costs (over $100), with the largest cost being $4,123.
• We defined amount inconsistency and unit inconsistency that re-
fer to a mismatch between the amounts or units in the bridge
ledger and the blockchain ledgers. We found that 9,956 (1.83%)
cross-chain transactions had amount inconsistencies across the
four bridges; Connext had 308 transactions that were marked as
successful but actually failed, posing a risk of asset loss. More-
over, three of the four bridges have unit inconsistencies.
• Our cluster analysis identified four main types of cross-chain
activities: ordinary transactions, large transfers, arbitrage bots,
and liquidity pool (LP) attacks. 93.15% of transactions were or-
dinary. However, large transfers, sometimes involving tens of
thousands of dollars, caused significant market fluctuations and
increased transfer costs (up to 13%). We found 11 arbitrage bots
that made $267,854 in profits over ten months, and an LP attack
that led to $570,000 in losses and a two-month suspension of All-
bridge services. We also tracked 24 known malicious addresses
involved in 82 cross-chain transactions, using bridges to trans-
fer illicit funds. This includes an address linked to the hacker
group Pink Drainer1. Our analysis also uncovered six previously
unreported suspicious addresses.

Contributions. Our study makes the following contributions.
• Large-scale cross-chain bridge transaction datasets: We collected
the first large-scale datasets of 543,576 cross-chain transactions
from four cross-chain bridges and 1,076,972 related on-chain
transactions from 11 chains, spanning the year 2023. The datasets
will be open-sourced to facilitate future research2.
• Systematic analysis of cross-chain transactions: We conducted an
in-depth and systematic analysis of cross-chain transactions, in-
cluding their basic characteristics and cost metrics. We analyzed
the inconsistencies between bridge transactions and on-chain
transactions, highlighting issues such as amount inconsistencies
and unit inconsistencies.
• New methods for cross-chain activity analysis:We propose ana-
lyzing cross-chain activities through transaction graphs rather
than individual transactions. We successfully identified several
activities, including arbitrage and attacks. Also, we uncovered
six previously unreported suspicious addresses.

1Pink Drainer is a notorious hacker group that has stolen over $85 million in cryp-
tocurrency from more than 21,000 victims in year 2023 [44].
2The dataset is available at https://doi.org/10.5281/zenodo.15392759

Ethical Considerations. Cross-chain Data was collected via of-
ficial APIs from bridge and blockchain explorers (e.g., Etherscan),
strictly following their API policies. All data is publicly available,
and no personally identifiable information (PII) is included.

2 Background
Blockchains are distributed ledgers that allow secure, transparent,
and immutable transactions between participants in a network [69].
These systems have gained significant popularity due to their ability
to support applications such as cryptocurrencies and decentralized
finance (DeFi). Each blockchain operates independently, following
its own consensus mechanisms and rules, which results in a lack of
interoperability between different chains.
Smart contracts are self-executing code on the blockchain [5],
enabling complex transactions without intermediaries and serving
as the foundation for DApps [7], such as tokens [46], NFTs [19, 64],
DeFi [13], swaps [4]. A contract includes some predefined events
that are emitted during execution [22]. Off-chain entities, such as
crypto wallets and cross-chain bridges, can listen to these events,
allowing real-time tracking of on-chain activities.
Cross-chain bridges are designed to enable the transfer of assets
and data between separate blockchain networks [29, 54, 56]. They
unlock the ability for users to operate in a multi-chain environment,
improving liquidity, and facilitating a more interconnected decen-
tralized ecosystem. Common cross-chain technologies include:
Lock and Mint is a cross-chain mechanism where assets are locked
on the source chain, and an equivalent amount of tokens is minted
on the destination chain [57, 67]. This allows users to interact with
assets on the destination chain, while the original assets remain
locked in a smart contract on the source chain. It ensures a 1:1 peg
between the locked asset and the minted token.
Burn and Release is typically the reverse of the Lock and Mint
process [9, 76]. In this protocol, tokens minted on the destination
chain are burned (destroyed), and the original locked assets on the
source chain are released and returned to the user. This ensures
that the total supply of assets across chains remains consistent.
Cross-Chain Messaging Protocols enable the transfer of data between
different chains, rather than assets [8]. This is achieved using re-
layers, oracles, and validators to ensure message integrity, employ-
ing cryptographic verification methods such as Merkle proofs and
threshold signatures to maintain cross-chain consensus and prevent
fraudulent activities.
Atomic Swap is a decentralized method for exchanging assets be-
tween two different chains [28, 59]. It uses cryptographic techniques
such as Hash Time-Locked Contracts (HTLC) to ensure that both
parties complete the transaction simultaneously, or neither trans-
action occurs, eliminating the risk of fraud.

3 Overview
This section first presents the cross-chain transaction model and
workflow, followed by the research questions. For convenience,
we use SrcTx and DstTx for source and destination transactions.
Similarly, SrcAddr and DstAddr refer to addresses, SrcChain and
DstChain to blockchains, SrcTxhash and DstTxhash to transaction
hashes, and SrcAmt and DstAmt to the transferred amounts.

https://doi.org/10.5281/zenodo.15392759
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Fig. 1: Cross-chain Transaction Workflow

Table 1: Notations for Cross-Chain Transaction Analysis

Symbol Description

A User address, with source As and destination Ad .
B Bridge ledger containing records br , where B = ⟨. . . , br𝑖 , br𝑖+1, . . . ⟩.
C Blockchain ledger containing blocks b, with source chain Cs and desti-

nation chain Cd , where C = ⟨. . . , b𝑖 , b𝑖+1, . . . ⟩.
sc Smart contract, with source scs and destination scd .
b Block containing transactions tx, with source block bs and destination

block bd , where b ∈ C and b = ⟨. . . , tx𝑖 , tx𝑖+1, . . . ⟩.
br Off-chain bridge record, where br ∈ B and br =

(As,Ad,Cs,Cd, scs, scd,H(txs ),H(txd ), amts, amtd ) .
tx On-chain transaction, with source txs and transaction txd , where tx ∈ b

and tx = (As,Ad, amt ) . amt is the transaction amount.
H Hash function, e.g., H(tx ) .
T Block timestamp function, e.g., T(b) .
G Gas cost function, e.g., G(tx ) , with G(tx )price for gas price and

G(tx )used for gas usage.

3.1 Cross-chain Model
A cross-chain transaction primarily involves three entities: the user
(sender and receiver), the cross-chain bridge, and the blockchain
(SrcChain and DstChain). Table 1 lists the symbols used in our
model, and Fig. 1 illustrates the workflow of cross-chain transac-
tions. Appendix A provides formalized definitions of cross-chain
transactions. The main workflow is as follows:

➊ The user (sender) As accesses the cross-chain bridge B and ini-
tiates a cross-chain transaction. The bridge prompts the user to sign
the SrcTx txs, which is then sent to the SrcChain Cs. ➋ The SrcTx in-
vokes a smart contract scs on the SrcChain Cs, which locks or burns
the user’s assets amts. ➌ Upon completion of the asset lock or burn,
the contract scs emits events on the SrcChain to signal the success
of the SrcTx. ➍ The bridge continuously listens for events. When it
detects the relevant event, it updates its local transaction record br ,
noting the SrcTx details, such as the amount of assets transferred.
➎ After verifying the events and the SrcTx, the bridge’s internal
coordinator prepares and sends the corresponding transaction txd
on the DstChain Cd. ➏ The DstTx txd calls a contract scd on the
DstChain Cd, which unlocks or mints the corresponding DstAmt
amtd, making it available to the receiver Ad. ➐ The contract scd
emits events to signal the success of the DstTx on the DstChain.
➑ The bridge monitors the DstChain for the emitted events. Upon
confirming the transaction’s success, it updates its local records br
and notifies the user that the cross-chain transaction is complete,
providing access to the assets on the DstChain.

Table 2: Key Metrics in Research Questions

Metric Definition
Time cost Δ𝑡 = T(𝑏d ) − T (𝑏s ) , where txs ∈ 𝑏s, txd ∈ 𝑏d

RQ1 Gas cost Δ𝑔 = G(txs )used × G(txs )price + G(txd )used ×
G(txd )price

Transfer cost Δ𝑟 = 1 − (txd .𝑎𝑚𝑡/txs .𝑎𝑚𝑡 )
Amount in-
consistency

br .𝑎𝑚𝑡 s ≠ txs .𝑎𝑚𝑡 ∨ br .𝑎𝑚𝑡d ≠ txd .𝑎𝑚𝑡 , where
br .H(txs ) = H(txs ), br .H(txd ) = H(txd )

RQ2 Unit incon-
sistency

Type 1: 𝑠1 ≠ 𝑠2 ∨ 𝑑1 ≠ 𝑑2, Type 2: 𝑠1 ≠

𝑑1 ∨ 𝑠2 ≠ 𝑑2, where 𝑠1 =
⌊
log10 (br .𝑎𝑚𝑡 s )

⌋
,

𝑠2 =
⌊
log10 (txs .𝑎𝑚𝑡 )

⌋
, 𝑑1 =

⌊
log10 (br .𝑎𝑚𝑡d )

⌋
,

𝑑2 =
⌊
log10 (txd .𝑎𝑚𝑡 )

⌋
, br .H(txs ) = H(txs ) ,

br .H(txd ) = H(txd )
RQ3 Arbitrage br .𝑎𝑚𝑡d − br .𝑎𝑚𝑡 s > 0

3.2 Research Questions
From the perspective of cross-chain transactions, this paper pro-
posed three key research questions, which target several critical
aspects of cross-chain transactions. Table 2 summarizes the key
metrics related to our research questions, and we will explain these
metrics in detail in later sections.
RQ1: Cross-chain Transaction Costs (§5).We aim to provide a
comprehensive understanding of the costs associated with cross-
chain transactions. By collecting real on-chain data, we measure
the time cost, gas cost, and transfer cost. These metrics are crucial
for users and developers to evaluate the performance and feasibility
of cross-chain transactions.
RQ2: Ledger Inconsistencies (§6). Ledger inconsistencies in cross-
chain bridges create development challenges, undermine user trust,
and introduce security risks. Discrepancies between off-chain and
on-chain data can cause confusion, miscalculations, and potential
financial losses while increasing development complexity. By ana-
lyzing these issues, we aim to enhance the transparency, security,
and reliability of cross-chain bridges.
RQ3: Cross-chain Activities (§7). Cross-chain transactions differ
significantly from normal transactions, potentially creating oppor-
tunities for specific use cases or introducing risks. By examining
transaction activity within cross-chain operations, we aim to un-
cover activities and summarize unusual patterns, such as arbitrage,
which could inform the design of more secure and efficient systems.
Additionally, we investigate the activities of known malicious ad-
dresses in cross-chain transactions, providing insights into security
threats within the blockchain ecosystem.
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Fig. 2: Data Collection Process

4 Data Collection
This section first introduces the selection of cross-chain bridges
and blockchains, then describes the data collection process, and
finally provides an overview of our dataset.

4.1 Selection of Bridges and Chains
We selected four cross-chain bridges and 11 blockchains to compre-
hensively evaluate cross-chain transactions.
Cross-chain bridges. We investigated 30 widely used cross-chain
bridges [76], covering both blockchain-to-Layer-2 (L1-L2) bridges
and cross-blockchain (L1-L1) bridges. Appendix §B.1 details the
bridges and their APIs. Our data collection relied on two APIs:
• Tx Info API, which retrieves details of a specific cross-chain
transaction using a transaction hash.
• Tx Index API, which provides an index of transactions over a
given time period (e.g., a year).

As shown in Table 13, 11 bridges provide the Tx Info API. How-
ever, without the Tx Index API, they do not offer a way to obtain
cross-chain transaction hashes, making it impossible to retrieve all
transactions within a specific timeframe. Only four bridges provide
both APIs, making them suitable for our analysis:Allbridge [2],Con-
next [15],Orbit [48], andWormhole [66]. These bridges collectively
hold over $2.07 billion in Total Value Locked (TVL) and employ
diverse cross-chain mechanisms. In terms of architecture: Allbridge
and Wormhole primarily operate on-chain, with off-chain com-
ponents for relayers or coordination. Orbit and Connext function
off-chain, with final transaction states committed to the blockchain.
For cross-chain transfers: Allbridge uses a Lock and Mint model
with liquidity pools and also supports Wormhole’s underlying pro-
tocol [1]. Connext employs state channels for fast, low-cost transac-
tions [14]. Orbit utilizes a cross-chain messaging protocol for asset
and data transfers [47].Wormhole relies on messaging protocols to
archive assets transfer [65]. Regarding asset types, Allbridge sup-
ports only stablecoins (ERC20), while Connext supports various
ERC20 tokens and NFTs. Orbit and Wormhole handle a broader
range of ERC20 tokens. Since ERC20 tokens dominate cross-chain
transactions, our study focuses on ERC20 transfers.
Chains.We collected on-chain data to comprehensively evaluate
cross-chain transactions. Public blockchain explorers, like Ether-
scan, offer APIs for accessing on-chain data. The blockscan.com
lists 22 blockchain explorers developed by the Ethereum team.
We matched these 22 blockchains with those supported by the
four bridges and identified 11 compatible blockchains as shown
in Table 4. As of September 2024, the TVL of these 11 blockchains
exceeded $63 billion [18].

4.2 Data Collection Process
We first collected the public APIs of the selected cross-chain bridges
and blockchains. Then, we designed a tool to request these APIs
to collect data. Fig. 2 describes our data collection process, which
consists of the following steps:
Step 1: Fetching and parsing cross-chain transactions:Our tool
uses the APIs provided by cross-chain platforms to fetch cross-chain
records from four bridges. These records contain basic cross-chain
information, such as SrcChain, DstChain, SrcTxhash, DstTxhash,
SrcAmt, and DstAmt. In Table 1, br presents the main fields.

To handle the different formats of cross-chain records, we added
a configuration file to map key fields for each bridge. Our tool first
parses key fields from the transaction records, such as amounts
(SrcAmt, DstAmt), chains (SrcChain, DstChain), and transaction
hashes (SrcTxhash, DstTxhash), then stores the data in the database,
referred to as the bridge ledger. This creates uniform ledgers for the
four bridges, simplifying analysis.
Step 2: Fetching source and destination transactions from
chains: Using the bridge ledger, our tool fetched on-chain data
for cross-chain transactions on both SrcChain and DstChain. It
selects the appropriate blockchain explorers based on SrcChain
and DstChain, then fetches on-chain data using SrcTxhash and
DstTxhash. The data is stored in the blockchain ledger. We utilize
APIs provided by blockchain explorers [23] to request transactions,
receipts, and blocks, using the following three APIs:
• eth_getTransactionByHash returns details for a given transaction
hash, including the sender’s address, recipient’s address, trans-
ferred amount, block number, and gas price. This data is key for
analyzing transaction costs.
• eth_getTransactionReceipt returns the transaction receipt for a
given transaction hash. The receipt includes gas used, logs, etc.
The transaction-emitted events are recorded in logs, which are
essential for tracking transaction outcomes.
• eth_getBlockByNumber returns detailed information about a
block given its block number, such as the blockhash and times-
tamp. We use the timestamp as the time of the transaction.

4.3 Datasets
We collected 543,576 cross-chain transactions (records) from four
cross-chain bridges-Allbridge,Connext,Orbit, andWormhole—span-
ning from January 1, 2023 to December 31, 2023 (one year). Ad-
ditionally, we gathered 1,076,972 related on-chain records from
11 blockchains. The data collection followed the guidelines and
rate limits of the bridge websites and blockchain explorers. Due to
API rate limits, the entire collection process took two months. The
dataset consists of two parts:
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Table 3: Number of Cross-chain Transactions on Four Bridges

Allbridge Connext Orbit Wormhole Total
54,587 453,165 2,763 33,061 543,576

Table 4: Number of Transactions on 11 Chains

Allbridge Connext Orbit Wormhole Total
Polygon 44,332 260,712 2,112 14,380 321,536
Arbitrum 11,746 207,662 N/A 6,996 226,404
Binance 38,552 150,621 1,070 N/A 190,243
Optimism N/A 132,530 N/A 5,681 138,211
Gnosis N/A 122,435 6 N/A 122,441
Ethereum 4,642 31,970 1,031 6,564 44,207
Celo N/A N/A 58 12,952 13,010
Fantom N/A N/A 2 11,082 11,084
Base N/A N/A N/A 8,375 8,375
Wemix N/A N/A 1,247 N/A 1,247
Linea N/A 214 N/A N/A 214
Total 99,272 906,144 5,526 66,030 1,076,972
N/A: the bridge does not support the chain or the transactioncount is zero.

• Bridge Ledger.This dataset contains 543,576 cross-chain records
from four bridges, reflecting the local bridge data. Each entry
includes basic cross-chain transaction details like SrcTx, DstTx,
SrcAmt, DstAmt, SrcAddr and DstAddr. However, Orbit and
Wormhole only provide one amount, so the same value is used
for both transactions.
• Blockchain Ledger. This dataset includes 1,076,972 on-chain
records from 11 chains, reflecting the actual on-chain data of
the cross-chain transactions. The on-chain data includes trans-
actions, receipts, and blocks.
Table 3 presents cross-chain transactions across four bridges and

11 chains in 2023, while Table 4 includes only those with available
on-chain data. We use these datasets for analysis in §5.3 and §6.
To extract the actual transferred amounts, we rely on Transfer-
Events from on-chain transactions, as detailed in Appendix §B.2.
Since some records share the same SrcTx and DstTx, the on-chain
transaction count in Table 4 is not exactly twice that in Table 3.

Additionally, Allbridge has four chains that are not listed in
Table 4 because blockscan.com does not provide APIs for these
chains. Nonetheless, we collect their bridge records, totaling 146,210,
and use them for cross-chain activity analysis in §7.

5 Cross-chain Transaction Cost
This section presents the basic metrics of cross-chain bridges, in-
cluding time cost, gas cost and transfer cost.

5.1 Time Cost
The time cost of a cross-chain transaction refers to the period be-
tween the sent of SrcTx and the completed of DstTx. This metric is
crucial for evaluating the performance of cross-chain bridges as it
directly impacts user experience. However, on-chain transactions
do not have timestamps, and the timestamps in cross-chain records
are incomplete. For example, Allbridge only records the creation
time, whileWormhole omits the time of SrcTx. As shown in Table 2,
we use timestamps of the blocks of SrcTx and DstTx to calculate
the time cost Δ𝑡 , which is an approximation.

Δ𝑡 = T (𝑏d) − T (𝑏s) (1)

where txs ∈ 𝑏s, txd ∈ 𝑏d.

Table 5: Time cost of Cross-Chain Transactions (99%)

Min Max Mean Median Std
Allbridge 0s 37m 35s 6m 19s 4m 40s 6m 43s
Connext 20s 3h 15m 3m 47s 1m 34s 13m 37s
Orbit 46s 3h 12m 9m 58s 11m 38s 13m 42s
Wormhole 10s 2d 21h 1h 25m 20m 5s 5h 17m
d: day, h: hour, m: minute, s: second
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Fig. 3: Distribution of Time Cost (≤ 3 Hours)

Result Analysis. Our results can be considered a lower bound
for actual transactions. Appendix C presents the cumulative dis-
tribution function (CDF) of time cost, with Fig. 10 showing most
transactions complete within 30 minutes. To ensure a more accurate
representation of typical transaction times, we excluded the slowest
1% of transactions across all four bridges, asWormhole allows user-
submitted DstTxs, which can introduce delays. Table 5 summarizes
the time cost for the remaining 99% of transactions. Allbridge is
stable (mean and std 6 min). The median of Connext (1m 34s) is far
below its mean (3m 47s), indicating quick completions. The median
of Orbit (11m 34s) exceeds its mean (9m 58s), suggesting frequent
delays. Wormhole shows high variability, with a maximum time of
nearly three days (2d 21h).

Fig. 3 illustrates the time cost distribution. About 99% of trans-
actions on Allbridge, Connext, and Orbit complete within three
hours, while 7.80% of Wormhole transactions take longer. We ob-
serve distinct peaks in Fig. 3, primarily influenced by transaction
routes and network conditions.Wormhole has two peaks because
it supports paying higher fees for faster cross-chain routes. All-
bridge shows three peaks as it uses both its own protocol and
Wormhole’s infrastructure [1]. Orbit’s peaks arise from varying
time costs across chains—15 minutes for ETH and Celo, 4 minutes
for others. Low transaction volume further amplifies this effect,
whereas other bridges’ higher volume smooths variations.
Outlier Analysis.We identified some unusual time costs in our
results. As shown in Table 5, Allbridge recorded a minimum time
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Table 6: Gas Cost (Gwei) for Cross-Chain Transactions

Min Max Mean Median Std
Allbridge 2.03 × 105 6.17 × 109 3.66 × 107 2.36 × 107 6.40 × 107
Connext 3.09 × 104 3.39 × 109 4.08 × 107 3.28 × 107 5.71 × 107
Orbit 6.44 × 105 2.99 × 108 3.73 × 107 3.12 × 107 3.03 × 107

Wormhole 7.19 × 10−1 7.92 × 109 2.85 × 107 1.20 × 107 1.14 × 108
1 Ether = 109 Gwei = 1012 Mwei = 1015 Kwei = 1018 Wei.

cost of zero seconds. This cross-chain transaction involved the same
SrcTx and DstTx. In §7, we identified this as an attack and provide a
detailed analysis. Additionally, Connext and Wormhole had 83 and
26 transactions, respectively, that took over a month to complete.
After manual verification, we confirmed these were valid cross-
chain transactions, with delays primarily caused by late submission
of the DstTx. In the case of Wormhole, users can manually submit
DstTx, leading to delays if they do not act promptly. Moreover, OKX
notes that the bridge may not always immediately receive the status
of the SrcTx, further delaying cross-chain transfers [45].

Finding 1.Most cross-chain transactions take just a few min-
utes, with the majority completed within three hours. The time
cost varies significantly across different bridges, largely due to
the protocols they use. Additionally, an attack transaction have
a very short time cost.

5.2 Gas Cost
Gas cost, or gas fee, is the transaction fee users pay for executing
transactions on a blockchain network. An on-chain transaction’s
gas cost is determined by the gas used and the gas price. The gas
used is the amount of gas consumed to execute a transaction, while
the gas price is the amount users are willing to pay per unit of gas.
In Table 2, the gas cost Δ𝑔 of a cross-chain transaction is the sum
of the gas costs of SrcTx and DstTx.

Δ𝑔 = G(txs)used × G(txs)price + G(txd)used × G(txd)price (2)

Gas used reflects the efficiency of cross-chain contracts. The me-
dian gas used for all four bridges is around 105 Gwei. Compared to
typical transfer transactions with 2.1×104 gas used [41], cross-chain
transactions consume more due to the complexity of contracts and
the involvement of two on-chain transactions. However, the me-
dian gas used is similar to swap transactions on Uniswap, which
use 1.7 × 105 gas [58]. Some transactions, especially on Wormhole,
use significantly more gas, with a maximum of 2.52 × 108 Gwei,
indicating potentially higher costs compared to other bridges.
Gas price reflects blockchain activity and transaction costs, with
higher prices indicating busier networks and increased costs. To
compare gas prices across chains, we converted them to USD based
on the respective cryptocurrency’s value. Ethereum has signifi-
cantly higher gas prices, with a median of 4.97 × 10−5 USD, while
other chains range from 1.20 × 10−12 to 1.33 × 10−7 USD.
Gas cost is a crucial factor. Each cross-chain transaction consists of
a SrcTx and a DstTx, with each blockchain charging a gas fee for its
portion. Table 6 shows the sum of SrcTx and DstTx gas costs, with
median costs for all four bridges fall within the range of 107 Gwei.
Fig. 4 shows the distribution of gas costs. The histograms indicate
that Allbridge, Connext, and Orbit have stable gas costs, with most
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Fig. 4: Distribution of Gas Cost Across Four Bridges

transactions ranging from 105 to 109 Gwei. Notably, Wormhole
shows some significantly lower gas costs, as it supports custom
relayers that offload on-chain computations to off-chain processing,
reducing gas usage [65]. However, some transactions have a gas cost
exceeding 1 Ether (109 Gwei). Additionally, the maximum values
in Fig. 4 show that the highest gas costs for Allbridge, Connext,
and Wormhole are more than 100 times higher than the mean and
median values. Upon analyzing these transactions, we identified
two main reasons for this: 1) the gas prices on certain chains are
inherently high leading to higher gas costs; For example, we found
when cross-chain transactions involve Ethereum or Polygon, the
gas costs are significantly higher than others. and 2) some users set
a higher gas price to speed up transactions. In the Polygon chain,
we found six transactions with gas costs significantly higher (100×)
than the others. These six transactions were identified as arbitrage
transactions in §7. Specifically, arbitrager set a significantly higher
gas price (10×) than typical gas prices on the Polygon chain to
ensure these transactions were processed as quickly as possible to
achieve the arbitrage goal.

Finding 2. The median gas costs are around 107 Gwei (a few
USD), but some transactions incur high costs (e.g., >1 Ether) for
time-sensitive operations like arbitrage. Offloading non-critical
on-chain computations to off-chain processing can significantly
reduce gas usage.

5.3 Transfer Cost
In cross-chain transfer, asset loss due to bridge fees, exchange rate
slippage, and other factors is called the transfer cost. Orbit and
Connext support multiple tokens with fluctuating USD prices, but
neither provides the USD value of the transferred amounts. As a
result, we cannot directly compare the transfer costs. To standardize
the measurement, we calculate the transfer cost Δ𝑟 using the ratio
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Fig. 5: Distribution of Tranfer Cost (-10% ∼ 10%)

of DstAmt to SrcAmt:

Δ𝑟 = 1 − (txd .𝑎𝑚𝑡/txs .𝑎𝑚𝑡) (3)

Δ𝑟 = 0 indicates no asset loss, while Δ𝑟 = 1 represents total asset
loss. A negative Δ𝑟 indicates asset gains, possibly due to exchange
rate differences [2] or arbitrage, which we will discuss in §7.

Allbridge and Connext provide both SrcAmt and DstAmt, allow-
ing direct calculation of transfer costs from ledger data. In contrast,
Orbit and Wormhole expose only one amount, so we extracted
SrcAmt and DstAmt from their TransferEvents. This yielded 1,861
pairs from 2,763 Orbit transactions (67.4%) and 25,189 pairs from
33,061 Wormhole transactions (76.2%). The remaining transactions
lacked TransferEvents and could not be processed.
Result Analysis. As shown in Fig. 5, the distribution of trans-
fer losses varies across bridges. The y-axis is in log scale, there-
fore, most transfer losses cluster slightly above zero. However,
Allbridge and Connext show a wider spread due to liquidity dis-
parities across chains, creating arbitrage opportunities. Allbridge
also has many low-value transactions, leading to more frequent
high transfer losses.Wormhole has the highest at 0.81%, while Con-
next and Orbit have lower costs at 0.15% and 0.10%, respectively.
Allbridge’s median is 0.43%. MostWormhole transfers show zero
cost since users can pay fees from their destination wallets. Overall,
cross-chain transfer costs are low. In Allbridge, 50% of transactions
cost under $0.34, and 90% under $3.24. However, 83 transactions
exceeded $100, with the highest at $4,123.26 (13% loss). These high
costs, driven by large transfers, lead to liquidity shortages on the
destination chain, as shown in §7.

Finding 3. The median transfer cost are within 1% across the
four bridges, indicating that most transactions benefit from
the high efficiency of current cross-chain transfers. However,
liquidity fluctuations can lead to higher transfer costs for users.

1

2

4

Bridge Server

TokenID
DstAmount

TokenID
DstAmount

TokenID
DstAmount

TokenID
SrcAmount

TokenID
SrcAmount

TokenID
SrcAmount

User Interface

Cross-chain Bridge

DstTx
Transfer
DstTx

Transfer Event
_to

_value

_from
_to

_value

_from

Event
_to

_value

_from

Destination Chain

Source Chain

SrcTx
Transfer
SrcTx

Transfer Event
_to

_value

_from
_to

_value

_from

Event
_to

_value

_from

Crypto 
Wallet
Crypto 
Wallet

UserUser

3

5

6

7

8

9

Bridge

Transfer Event

A2A1 A3

Bridge Ledger

SrcTx
Transfer
SrcTx

Transfer Event
_to

_value

_from
_to

_value

_from

Event
_to

_value

_from

DstTx
Transfer
DstTx

Transfer Event
_to

_value

_from
_to

_value

_from

Event
_to

_value

_from

SrcAddr

SrcChain
SrcTxhash

SrcAmt

DstAddr

DstChain
DstTxhash

DstAmt

Destination Chain

Source Chain

Emit

Emit

Fig. 6: Inconsistency Between Bridge and Chain Ledgers

6 Ledger Inconsistencies
Cross-chain transactions involve three ledgers: the bridge ledger,
the SrcChain ledger, and the DstChain ledger. Inconsistencies be-
tween these ledgers could lead to security risks and asset loss.
This section addresses two types of inconsistencies: Amount In-
consistency and Unit Inconsistency. These inconsistencies create
challenges in protocol functioning and increase the likelihood of
confusion and attack surfaces. For example, in Connext, we have
observed 308 amount inconsistencies may have led to asset loss.
Additionally, Wormhole supports custom relayers, and unit incon-
sistencies complicate relayer design, as developers must address
these discrepancies manually, increasing security risks.
Amount Inconsistency occurs the amounts recorded in the bridge
ledger differ from those in the blockchain ledgers. As outlined
in §3.1, the bridge ledger tracks SrcAmt in step ➍ and DstAmt
in step ➐. The SrcAmt should match the amount in the SrcChain
ledger, while DstAmt should match the amount in the DstChain
ledger. Fig. 6 illustrates the relationship between the amounts in the
bridge and blockchain ledgers: the value (SrcValue) in the SrcTx’s
TransferEvent should match the SrcAmt in the bridge ledger, and
the value (DstValue) in the DstTx’s TransferEvent should match the
DstAmt. Amount inconsistency can be represented as:

br .𝑎𝑚𝑡 s ≠ txs .𝑎𝑚𝑡 ∨ br .𝑎𝑚𝑡d ≠ txd .𝑎𝑚𝑡 (4)

where br .H(txs) = H(txs), br .H(txd) = H(txd).
Unit Inconsistency refers to the inconsistency between the units
of the amounts in the bridge ledger and blockchain ledgers. Through
manual analysis of the bridge ledgers and their corresponding Sr-
cValue and DstValue in TransferEvents, we found that the units
of these amounts can be inconsistent. For example, in Allbridge, a
transaction transferring USDC from Polygon to Binance records Sr-
cAmt andDstAmt in the bridge ledger as 267.909851 and 267.5690435,
respectively. However, the SrcValue on Polygon is 267909851, while
the DstValue on Binance is 267569043500000000000. This reveals
two types of unit inconsistencies:
• Type 1: <Bridge, Chain> - inconsistency between the bridge
ledger and blockchain ledgers.
• Type 2: <SrcChain, DstChain> — inconsistency between the
source and destination chains.

Unit inconsistency can be represented as:

Type 1: 𝑠1 ≠ 𝑠2 ∨ 𝑑1 ≠ 𝑑2, Type 2: 𝑠1 ≠ 𝑑1 ∨ 𝑠2 ≠ 𝑑2 (5)

𝑠1 =
⌊
log10 (br .𝑎𝑚𝑡s)

⌋
, 𝑠2 =

⌊
log10 (txs .𝑎𝑚𝑡)

⌋
, 𝑑1 =

⌊
log10 (br .𝑎𝑚𝑡d)

⌋
,

𝑑2 =
⌊
log10 (txd .𝑎𝑚𝑡)

⌋
, br .H(txs) = H(txs), br .H(txd) = H(txd).
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Table 7: Amount Inconsistency

AllBridge Connext Orbit Wormhole
SrcAmt ≠ SrcValue 7,321 (13.41%) 328 (0.072%) 1,638 (59.28%) N/A
DstAmt ≠ DstValue 0 (0.0%) 20 (0.004%) N/A 669 (2.02%)
N/A: ledger does not provide SrcAmt or DstAmt.

Table 8: Unit Inconsistency

AllBridge Connext Orbit Wormhole
Type 1: <Bridge, Chain> 100% 0.0% 0.0% 86.05%
Type 2: <SrcChain, DstChain> 50.65% 10.78% 0.0% 0.0%

Detection. For each cross-chain transaction, we 1) extract SrcValue
and DstValue from the TransferEvents of SrcTx and DstTx and 2)
compare them with SrcAmt and DstAmt in the bridge ledger. If
they do not match, it indicates an amount inconsistency. To prevent
false positives caused by unit inconsistencies, we first standardize
the magnitude of the two amounts before comparison, as shown in
algorithm 1. If they still differ, we confirm an amount inconsistency.
We use the CountMagnitude() method to determine the magnitude
of amounts. If the magnitudes of SrcAmt and SrcValue differ, it
indicates a unit inconsistency. Since Orbit andWormhole provide
only one amount, we compare it with both SrcValue and DstValue.
Result of amount inconsistency detection. Table 7 shows the
amount inconsistencies. Allbridge and Orbit exhibit 13.41% and
59.28% SrcAmt inconsistencies, respectively, caused by the Swap
operation. Both record only the amount after the swap, leading to
discrepancies. Specifically, the SrcTx swaps one token (tokenA) for
another (tokenB), and the DstTx receives tokenB. However, only
the amounts of tokenB are recorded in the ledgers, while the user
transfers tokenA in the SrcTx, resulting in SrcAmt inconsistencies.

Connext has 0.072% SrcAmt and 0.004% DstAmt inconsistencies.
These are due to two main causes: 1) Failed DstTx: approximately
308 transactions failed due to issues like out of gas or execution
reverted. The SrcTx executed successfully with non-zero SrcValue,
but Connext recorded SrcAmt and DstAmt as zero, causing incon-
sistencies. Additionally, these transactions are labeled as SUCCESS
on the Connext website, indicating that Connext may not properly
handle transaction exceptions, which could result in user losses.
2) NFT transfers: about 20 inconsistencies were caused by NFT
(ERC721) transfers being mistaken for ERC20. While both use the
same event signature, ERC20 uses the third parameter for value,
whereas ERC721 uses it for tokenID. The reason is Connext did not
differentiate them.

Wormhole only records one amount and supports two types of
transactions: 1) Approve transfer with destination wallet requires
users to manually receive and pay fees on the destination wallet,
resulting in consistency between SrcAmt and DstAmt. 2) Receive
tokens automatically deducts bridge fees during the cross-chain
transfer, resulting in transfer loss and leading to DstAmt inconsis-
tency. We found 2.02% of such transactions, as shown in Table 7.

Finding 4. We identified 9,956 (1.83%) transactions with incon-
sistencies, and 308 failed DstTx in Connext went undetected,
potentially causing asset loss. Inconsistencies arise from bridges
overlooking edge cases, such as on-chain exceptions. These
inconsistencies introduce security risks and poor experience.

Result of unit inconsistency detection.Table 8 shows the unit in-
consistencies between ledgers. Allbridge has Type 1: <Bridge, Chain>
inconsistencies because it converts transferred amounts (stable-
coins) into dollar units, making all amounts in the bridge ledger
inconsistent with on-chain transactions. Wormhole has 86.05% of
transactions with Type 1 unit inconsistencies, with chaotic unit us-
age—some amounts being smaller and others larger than on-chain
values. Wormhole supports custom relayers, and unit inconsisten-
cies require developers to manually address these discrepancies,
adding extra workload and increasing security risks. Additionally,
Allbridge and Connext show 50.65% and 10.78% of transactions
with Type 2: <SrcChain, DstChain> unit inconsistencies, indicating
non-uniformity in the units used in their cross-chain contracts. In
contrast, Orbit has no unit inconsistencies, andWormholemaintain
consistent units in cross-chain contracts.

Finding 5. Three of the four bridges have unit inconsistencies,
indicating that cross-chain bridges do not properly standardize
the cross-chain bridges and on-chain contracts. These inconsis-
tencies complicate cross-chain transfers, requiring developers
to handle them manually.

7 Cross-chain Activities
This section focuses on activities within cross-chain transactions,
particularly unusual patterns. Given the unique characteristics of
cross-chain transactions, we propose extracting features from trans-
action graphs rather than individual transactions and then perform-
ing clustering analysis. Our method uncovers four main types of
activities: ordinary transactions, large transfers, arbitrage bots, and
liquidity pool (LP) attacks. Additionally, we trace activities related to
malicious addresses in cross-chain transactions and find that these
addresses utilize cross-chain bridges to transfer assets. We also
identify six previously unreported suspicious malicious addresses.
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Fig. 7: Cross-chain Activity Clustering Workflow

7.1 Overview
RQ3 aims to identify and characterize activities in cross-chain trans-
actions, particularly unusual ones. As illustrated in Fig. 7, we con-
struct transaction graphs from collected transactions, extract rel-
evant features, and apply clustering to group similar transaction
patterns. Finally, we manually analyze the clustering results to
categorize activity types.
Dataset. Due to missing on-chain data for some blockchains, trans-
action graphs would be incomplete. Therefore, we rely solely on
ledger data for a comprehensive year-long analysis of cross-chain
activity. Among the four bridge ledgers, Allbridge is the only one
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providing complete SrcAmt and DstAmt data, as it exclusively
supports stablecoins with a USD-equivalent value, enabling stan-
dardized analysis. In contrast, Connext supports various tokens and
NFTs, complicating value measurement, while Orbit and Worm-
hole lack SrcAmt or DstAmt data. The Allbridge ledger contains
146,210 transactions across eight blockchains, four of which are not
analyzed in §5 and §6 due to the absence of on-chain data.

7.2 Methodology
Our methodology combines graph-based feature extraction with
clustering method to identify cross-chain activities.
Transaction Graph. Cross-chain transactions are significantly
different from other conventional transactions like bank transfers
or native blockchain transaction. In conventional transactions, the
sender and the receiver are usually different entities. In cross-chain
transactions, the sender and receiver are often the same user or
organization [36], as the primary purpose is to transfer assets across
blockchains. To accommodate this, we use cross-chain transactions
to construct directed multi-edge graphs, where nodes represent the
SrcAddr and DstAddr and edges carry specific transaction informa-
tion, such as amount. Then, we consider each graph to encapsulate
the activities of a single user or organization. From 146,210 transac-
tions, we ultimately constructed 59,465 distinct transaction graphs.
Feature Selection. To capture the activity patterns of each user
or organization, we extracted features from the transaction graphs.
Specifically, we focus on the four aspects: transaction frequency,
amounts, transfer cost and graph attribute. Appendix §E.1 details all
considered features and their rationale. We select 11 key features
reflect various aspects of user activity and behavior within the
transaction graph. Specifically, TxCount reflects the user’s overall
activity level, while WkFreqMax highlights periods of peak activity.
SrcAmtMax and DstAmtMax capture the largest individual transac-
tions, highlighting extreme cases. These are particularly useful for
detecting anomalies or unusually activities. In the transfer cost, we
use three features ProfitNum, ProfitSum, and LossSum to represent it.
These features reflect the financial outcomes of the transactions. We
also select four structural features from the graph. DegAvg reflects
the transaction frequency of the overall node. DegGinimeasures the
inequality in transaction distribution among addresses, identifying
whether a few nodes dominate the activity. AvgSPL reflects the
breadth and efficiency of the transaction network. Density indicates
the overall interconnectedness of the graph, showing how tightly
knit the network is.
K-means Clustering.We opted for the K-means clustering algo-
rithm due to its efficiency and suitability for medium-sized datasets.
K-means partitions data into k clusters by minimizing the within-
cluster sum of squares (inertia), effectively grouping similar data
points based on feature proximity. In addition, K-means can also be
used to detect outliers when most data points form clusters and out-
liers are far away from the clusters. This is consistent with our goal
of discovering unusual activities. Other methods such as DBSCAN
and isolation forest were considered but deemed less appropriate
for our goal (explained in Appendix §E.2).
Choice of 𝑘 . Choosing the appropriate number of clusters k is
crucial for effective K-means clustering. To determine the optimal
k, we tested values ranging from 2 to 30 using the Elbow Method.

We observed a noticeable inflection point between 7 and 10 clusters
and selected 𝑘 = 10 to capture as many distinct activity patterns as
possible (details in Appendix §E.3).
Evaluation. Silhouette Scores assess how well a data point fits
within its assigned cluster relative to others, with values ranging
from -1 to 1. A score near 1 indicates strong cohesion within its
cluster, around 0 suggests the point is near a cluster boundary,
and close to -1 implies potential misassignment. Our clustering
achieved an average Silhouette Score of 0.7094, indicating well-
defined clusters and proper grouping of data points, which reflects
the effectiveness of our method.
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Fig. 8: Cluster Results Visualization (100 samples)

7.3 Results Analysis
We identified ten clusters representing different cross-chain activi-
ties and manually analyzed their transactions to infer the activities.
Finally, we categorized these 10 clusters into four groups: G1: Nor-
mal Transactions, G2: Large Transfers, G3: Arbitrage Bots, and G4:
Liquidity Pool (LP) Attack. This section delves into each group’s
characteristics, focusing particularly on anomalies and implications.

Table 9 summarizes the number of transaction graphs (each
representing the activity of a single user or organization) and the
total number of transactions within each group and cluster. While
the majority of cross-chain activities are normal asset transfers (G1),
we identified four instances of large fund transfers (G2) involving
138 transactions. Additionally, we found 11 cases related to arbitrage
bots (G3), comprising 9,363 transactions. Notably, we discovered a
liquidity pool attack (G4) targeting the liquidity pool of Allbridge,
resulting in a profit exceeding $570,000 and causing Allbridge to
suspend its services for nearly two months.

Fig. 8a shows the scatter plot of clustering results after reducing
the 11 features to two dimensions using Principal Component Anal-
ysis (PCA) on a sample of 100 transactions. The long-tail feature
distribution and two outliers compress the axes, but the distinction
between groups remains clear, and there is good differentiation
within each group as well. For example, Fig. 8b provides a t-SNE vi-
sualization of five clusters within G1. Although there is one outlier,
overall the clusters within the group are well distinguished. Note
that setting 𝑘 to a smaller value (e.g., 𝑘 = 5) does not guarantee
better clustering. Transactions in different clusters within the same
group still show significant differences, as seen in Table 10. Next,
we will analyze the activity of four groups in detail.
G1: Normal Transactions. In cross-chain transactions, 93.15%
of activities are normal transactions. They are divided into five
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Table 9: Graph and Transaction Statistics by Cluster Group

Group G1 G2 G3 G4
Cluster ID 0 3 5 7 9 4 1 8 6 2
Graph Count 29,297 23,258 634 6,206 58 4 1 3 7 1
Address Count 58,675 23,258 1,611 17,273 154 8 6 28 15 2
Transaction Count 52,153 38,683 3,175 2,106 506 138 4,660 2,597 2,106 1
Total Graph Count 59,453 4 11 1
Total Address Count 100,971 8 49 2
Total Transaction Count 96,623 138 9,363 1

Table 10: Cluster Label vs Feature Normalized Heatmap

Group G1 G2 G3 G4
Cluster 0 3 5 7 9 4 1 8 6 2
TxNum* 0.1 0.1 0.2 0.2 0.3 0.4 1.0 0.8 0.7 0.1

WkFreqMax* 0.1 0.1 0.2 0.2 0.3 0.5 1.0 0.7 0.7 0.1
SrcAmtMax* 0.5 0.4 0.8 0.5 0.8 0.9 0.8 0.8 0.7 0.8
DstAmtMax* 0.5 0.4 0.8 0.5 0.8 0.9 0.8 0.8 0.7 1.0
ProfitNum* 0.0 0.0 0.1 0.1 0.0 0.1 1.0 0.8 0.5 0.1
ProfitSum* 0.0 0.0 0.4 0.2 0.6 0.5 0.9 0.8 0.6 1.0
LossSum* 0.2 0.1 0.4 0.2 0.6 0.8 0.6 0.7 0.4 0.0
DegAvg 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 0.2 0.0
DegGini 0.0 0.0 0.1 0.4 0.1 0.0 1.0 1.0 0.3 0.0
AvgSPL 0.5 0.0 0.6 0.6 0.6 0.5 0.8 1.0 0.5 0.5
Density 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 0.8 0.0

* indicates log-transformed for better data comparison.

cluster labels (0, 3, 5, 7, 9). As shown in Table 10, these transactions
are categorized into five types mainly because of differences in
their transaction counts (TxNum) and the magnitude of transferred
amounts (SrcAmtMax, DstAmtMax).

In this group, clusters 0, 3, and 7 have 90% of transactions not
exceeding $1,100 USD. Clusters 5 and 9 involve transactions with
larger amounts, with an average SrcAmt of $15,000 USD. Also, nor-
mal transactions have low transaction frequencies; in clusters 0, 3,
and 5, 90% of transaction graphs have nomore than five transactions,
while in clusters 7 and 9, 90% have no more than 15 transactions.
Their average transfer loss is 2.43%. From the perspective of transac-
tion networks, these transactions are relatively simple, with simple
network structures and low network-related feature values. Overall,
these low-frequency users primarily use cross-chain bridges for
asset transfers.
G2: Large Transfers. G2 represents large-scale cross-chain fund
transfers, consisting of 4 groups, 8 addresses, and 138 transactions.
These transactions have an average SrcAmt of $31,526, with a signif-
icantly higher transfer loss (5.58%) compared to normal transactions
(G1). This aligns with our findings in §5.3, where high WkFreqMax
indicates frequent cross-chain transfers over short periods, reduc-
ing pool liquidity and increasing transfer costs. From a graph per-
spective, G2’s DegGini and Density are both 0, indicating a sparse
transaction structure. Analysis reveals that G2 includes continuous
transfers and self-loops (i.e., SrcAddr and DstAddr are the same),
leading to a low DegGini. Compared to arbitrage bots (G3), G2 has
fewer transactions and lower interaction frequency, resulting in a
lower normalized Density.

Notably, none of these addresses have been flagged as phishing or
attacker addresses. We speculate they are controlled by institutions
or large entities with low initial holding costs, making them less
sensitive to transfer losses. Additionally, these addresses frequently
participate in DeFi activities, suggesting that their cross-chain trans-
actions primarily serve investment purposes, such as providing
liquidity to trading pools or engaging in other DeFi strategies.
G3: Arbitrage Bots. Liquidity pool-based bridges, like Allbridge,
offer arbitrage opportunities as token values fluctuate with supply
and demand across different chains. Arbitrage bots exploit these
price differences for profit by executing rapid cross-chain trans-
actions. We identified 11 arbitrage bots that collectively profited
$267,850 through cross-chain arbitrage. These bots exhibit distinc-
tive features, as shown in Table 10.
• Cluster 1 (1 bot, 6 addrs, 4,660 txs) represents large-scale arbi-
trage. The bot executed 4,386 profitable transactions (94.12%),
earning $121,337. It appears as a significant outlier (yellow
hexagon) in Fig. 8a. The bot has high-frequency transactions,
with DegGini (1.0), DegAvg (1.0), and Density (1.0). Most trans-
actions are concentrated in a few key addresses, while others
handle fund transfers or profit settlement.
• Cluster 8 (3 bots, 28 addrs, 2,597 txs) represents medium-scale ar-
bitrage. The larger number of addresses results in lower DegAvg
(0.1) and Density (0.1) than Cluster 1. However, DegGini (1.0)
indicates a similar structure to cluster 1, where key addresses
dominate while others are loosely connected.
• Cluster 6 (7 bots, 15 addrs, 2,106 txs) represents a mix of small-
and medium-scale arbitrage. The lower DegGini (0.3) suggests a
more even transaction distribution. Density (0.8) remains rela-
tively high due to a few dominant bots, but overall, the structure
is more balanced than Clusters 1 and 8.
Despite some transfer losses, these bots remain highly profitable.

For instance, Cluster 1 had a cumulative loss of $1,910, yet secured
over $100,000 in net profit. Arbitrage bots play a dual role in the
market. On one hand, they increase liquidity by frequently trading
assets across chains. On the other hand, their high-speed execution
gives them an advantage over normal users, limiting opportunities
for others to profit from price discrepancies.
G4: Liquidity Pool (LP) Attack. In Fig. 8a, there is another sig-
nificant outlier (the red square) belonging to cluster 2, recognized
by Allbridge officials as an attack [51]. On April 2, 2023, Allbridge
experienced a flash loan exploit on the BSC. The stablecoin pools
for USDT and BUSD were attacked, resulting in hackers stealing ap-
proximately $570,000 USD. The root cause was a logical flaw in the
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Fig. 9: Allbridge Daily Transaction Volume in 2023

cross-chain contract; the attacker acted as both a liquidity provider
and swapper, enabling them to manipulate prices and drain funds
from the pool. The attacker used a single transaction to flash loan
$7.5 million BUSD, then manipulated the liquidity of the pool to
affect token values, ultimately gaining $570,000 in profits.

From Table 10, the LP attack differs from other transactions.
First, the attacker can obtain more funds through flash loans, so its
SrcAmtMax is not very high. Second, its ProfitSum is significantly
higher than others, including arbitrage transactions. The attacker’s
transaction graph is simple, involving only one transaction with
no other cross-chain activity. The attacker targeted the liquidity
pool, conducting a single on-chain transaction where both the Sr-
cChain and DstChain were on BSC, explaining the zero time cost
in §5.1. This attack not only caused financial losses but also led to
the suspension of the cross-chain bridge service. Fig. 9 tracks All-
bridge’s daily transaction volume. After the attack was announced
on April 2, the transaction volume dropped to zero and only began
recovering at the end of May, about two months later.

Finding 6. We conducted a cluster analysis of transaction
graphs and identified four main types of activities: normal trans-
actions, large transfers, arbitrage bots, and liquidity pool attacks.
Large transfers caused significant market fluctuations, increas-
ing transfer costs. Arbitrage bots accumulated substantial profits
within a few months, and a single LP attack resulted in over
$570,000 in losses and a two-month service suspension. These
abnormal activities strained regular users by reducing liquidity
and driving up costs.

7.4 Malicious Address Activities
This section investigates whether known malicious addresses are
involved in cross-chain transactions. Metasleuth.io, a website that
tracks malicious addresses, has reported 1574 malicious address
related to attacks on Ethereum transactions. We collected these
malicious addresses and tracked their cross-chain activities.

We first checked if the fromAddress and toAddress in cross-chain
transactions matched any reported malicious addresses. Using the
identified transactions, we traced all related cross-chain activities
through transaction graphs in §7.2. Finally, we discovered 24 mali-
cious addresses involved in 82 cross-chain transactions in 24 trans-
action graphs, with a cumulative transfer amount of $186,043. All
these transactions fell under G1: Normal Transactions, indicating
that asset transfers were the main purpose of these malicious ad-
dresses’ cross-chain activities. We also identified one Pink Drainer

Table 11: Newly Identified Potentially Malicious Addresses

# Blockchain Address

1 Binance (BSC) 0x2b8ea90eae79c632c05f5ff39fbc337145cadcca
2 TRON (TRX) ta9qhksusxrwxqvvra5rim7dlt8ih94rd4
3 TRON (TRX) tuidc4msrenvohaa63ddtpzz9yeycfdgax
4 Avalanche (AVA) 0xb7394b66f64d266fc6c64b9a73648aa462064cfb
5 Avalanche (AVA) 0x9b2cc969615ca71b190fbf3e881b90eb97e13ee2
6 Polygon (POL) 0x8afea410deeaa58adba6af384ae5e9309b49d8f2

address involved in 26 cross-chain transactions. As reported by
Metasleuth.io, the Pink Drainer organizations were involved in
159 phishing incidents, resulting in losses exceeding $5.44 million.
Notably, 91.46% (75 transactions) of these cross-chain transactions
were transferred out from the Binance Smart Chain (BSC), suggest-
ing that BSC was a frequent target.

Based on the 24 transaction graphs, we also found six previ-
ously unreported malicious addresses, as shown in Table 11. We
have reported these addresses to relevant blockchain explorers.
Traditional methods for tracking malicious addresses are limited to
blockchains that use the same address format. For example, if an
address is confirmed to be involved in an attack on Ethereum (ETH),
its activities can only be tracked on blockchains with a matching
format. However, if the two blockchains use different address for-
mats, as is the case with BSC and TRX in Table 11, this method
becomes ineffective. By analyzing cross-chain transactions, we can
overcome these limitations and trace malicious activities across
blockchains with different address formats.

Finding 7. We identified 24 reported malicious addresses in-
volved in 82 cross-chain transactions, totaling $186,043. The
primary activity of these addresses on cross-chain bridges was
the transfer of illicit funds. Additionally, we uncovered six pre-
viously unreported suspicious addresses.

8 Limitations and Discussion
8.1 Limitations
Our study have several limitations. First, we only focus on cross-
chain bridges with official APIs, which only covers a subset of all
cross-chain bridges. Moreover, we excluded cross-chain transac-
tions that have incomplete information. Second, we only analyzed
cross-chain transfers with the standard Transfer function. About
2% of on-chain transactions do not use this function and may in-
volve custom transfer functions, which we did not consider. Future
work can study these customized transfer functions. Third, in time
cost analysis, we use block timestamps to calculate the time cost,
which only representing the lower bound of the actual time cost.
Fourth, for arbitrage analysis, we did not consider on-chain gas
fees. Besides, another common arbitrage strategy involves taking
advantage of price discrepancies between chains, but we did not
investigate this due to the lack of comprehensive historical price
data across different blockchains. We leave a complete study to
address these limitations as our future work.

Metasleuth.io


ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Kailun Yan, Bo Lu, Pranav Agrawal, Jiasun Li, Wenrui Diao, and Xiaokuan Zhang

8.2 Discussion
Collecting and analyzing cross-chain transaction data is challenging
due to the lack of public APIs, inconsistent data, and limited trans-
action details from many cross-chain bridges. To address this, we
supplemented our analysis with additional blockchain data. These
issues stem from the lack of standardization in cross-chain bridges,
which we discuss next.
Standardization. Our study reveals that most cross-chain bridges
lack standardized ledger structures and smart contracts. We identi-
fied 20,676 on-chain transactions with non-standard events across
the four bridges, highlighting inconsistencies in cross-chain con-
tract implementations. The lack of standardization can lead to asset
losses. For example, we found failed on-chain transactions that
were not marked as exceptions in the Connext ledger, suggesting
inadequate standards for exception handling and transaction track-
ing. Additionally, bridges are also vulnerable to LP attacks, like
the Allbridge exploit on April 2, 2023, where flash loan manipula-
tion caused a $570k loss and a temporary shutdown. These issues
highlight the need for robust mechanisms in cross-chain bridges.
Recommendations. Based on our study, we provide the following
recommendations for bridge developers.

For Existing Bridges: Enhancing transparency is crucial to mitigat-
ing ledger inconsistencies. Cross-chain bridges should: 1) Clearly
indicate asset unit conversions and provide asset mapping details
in their APIs to help developers correctly handle unit differences.
2) Continuously monitor and accurately interpret on-chain transac-
tions to detect and resolve anomalies in a timely manner. 3) Conduct
security audits on smart contracts and implement real-time moni-
toring of on-chain states to prevent attacks.

For Future Bridges: New cross-chain bridge designs should adopt
standardized frameworks to prevent ecosystem fragmentation and
improve interoperability. Standardization should include: 1) Unified
APIs that follow a structured format for asset transfers, making
integration smoother for developers. 2) Ensuring consistency be-
tween on-chain and off-chain data to avoid conversion mismatches
and precision discrepancies. 3) Comprehensive transaction logging
and standardized exception handling, ensuring complete and trans-
parent ledger records.
Future Work. Transaction graphs provide an innovative view-
point for detecting hidden cross-chain activities from cross-chain
transactions. Future research could delve more deeply into specific
actions such as substantial transfers and arbitrage bots. Additionally,
monitoring and examining malicious addresses within cross-chain
transactions presents a valuable area for further investigation.

9 Related Work
To the best of our knowledge, our work is the first to systematically
analyze cross-chain transactions by analyzing both cross-chain
bridge and blockchain data. Our empirical analysis provides insights
into the performance and security of cross-chain bridges, shedding
light on potential risks and vulnerabilities.
Cross-chain technology. enables secure and efficient communica-
tion between different blockchains, facilitating asset transfers [25,
38, 49] and message passing [35, 59, 74]. Common cross-chain tech-
nologies include cross-chain bridges [55–57, 67], relays [63, 72],

sidechains [12], and Hash Time-Locked Contracts (HTLCs) [11,
24, 28, 59]. Ou et al. [49] provided an overview of cross-chain
technology, including mechanisms, platforms, challenges, and ad-
vances. They discussed the main cross-chain technologies, such
as interoperability, trust model, transaction speed and security.
Lin et al. [38] provides a systematic overview of cross-chain asset
transfer schemes, introducing their classification, main challenges,
and representative implementations. Zamyatin et al. [74] present a
general framework to design and evaluate cross-chain communica-
tion protocols that facilitate blockchain interoperability. Existing
works mainly focus on specific cross-chain technologies, while our
work abstracts the cross-chain transaction process to systemati-
cally measure and analyze the performance and security of different
cross-chain bridges.
Cross-chain bridge security. Existing works [26, 68] have ana-
lyzed issues such as security and privacy of cross-chain bridges
from different perspectives. Zhang et al. [76] performed a systematic
study of cross-chain bridge security issues, identified 12 potential
attack vectors. Lee et al. [32] analyzed bridge attacks from four
components and reviewed 8 exploits from real-world and discussed
the mitigation. Xscope [75] is an automatic tool to find security
violations in cross-chain bridges. It uses a set of security properties
and patterns to detect security issues in cross-chain bridges. Han et
al. [25] conducted a survey on blockchain interoperability, focusing
on security and privacy challenges. Compared to the above works,
our work provides a comprehensive empirical analysis of cross-
chain bridges from both bridge and blockchain transaction data.
Blockchain measurement.Many studies empirically analyze var-
ious aspects of blockchain, such as transactions and interactions
among entities [3, 10, 30, 33, 37, 42, 43, 53, 61, 70, 78]. Some focus
on the effects of specific protocols post-Ethereum upgrade, like EIP-
1559 [34, 39, 52], and on decentralized applications (DApps) like
Uniswap [27]. Miner Extractable Value (MEV) or Block Extractable
Value (BEV) have also been studied extensively [6, 16, 40, 50, 60, 62,
71, 77]. These works provide valuable insights into the performance
and security of blockchains, but they do not focus on cross-chain
transactions and bridges.

10 Conclusion
This paper combines bridge transaction data and on-chain trans-
action data to present the first large-scale measurement study of
four cross-chain bridges. Our work focuses on cost metrics, incon-
sistencies, and activities in cross-chain transactions. Overall, we
find that while performance varies across the four bridges, most
regular transactions are completed within minutes and at low costs,
typically just a few dollars, making them practical. However, we
also identified issues such as transactions with unusually high costs
and inconsistencies between bridge and blockchain ledgers. Ad-
ditionally, we uncover various activities, including liquidity pool
attacks that have caused significant losses to bridges, as well as
large transfers and arbitrage bots.
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A Formalized Definitions
Based on the cross-chain workflow shown in Fig. 1, we provide
the formalized definitions of cross-chain transactions in Table 12.
These definitions outline the key actions and their corresponding
descriptions, providing a systematic view of the cross-chain process.

Table 12: Formal Definition of Cross-chain Transaction

# Action Description

➊ Send SrcTx As
txs−−→ Cs : txs = (As, scs, 𝑎𝑚𝑡 s )

➋ Lock/Burn Asset txs
𝑐𝑎𝑙𝑙−−−→ scs : Lock/Burn (As, amts )

➌ Emit 𝑒𝑣𝑒𝑛𝑡 scs
emit−−−→ Cs : events = (As, scs, 𝑎𝑚𝑡 s )

➍ Update Record B
events←−−−− Cs : br ← (As, scs, 𝑎𝑚𝑡 s,H(txs ) )

➎ Send DstTx B
txd−−→ Cd : txd = (Ad, scd, amtd )

➏ Mint/Release Asset txd
𝑐𝑎𝑙𝑙−−−→ scd : Unlock/Mint (Ad, amtd )

➐ Emit 𝑒𝑣𝑒𝑛𝑡 scd
emit−−−→ Cd : eventd = (Ad, scd, amtd )

➑ Update Record B
eventd←−−−− Cd : br ← (Ad, scd, 𝑎𝑚𝑡d,H(txd ) )

B Cross-chain Transaction Dataset
B.1 Cross Chain Bridges Selection
Table 13 lists the 30 bridges we considered. We used two APIs for
data collection: the Tx Info API and the Tx Index API. The Tx Info
API provides details of individual cross-chain transactions, while
the Tx Index API offers an index of transactions over a specified
period, such as a set of transaction hashes. Some bridges only offer
the Tx Info API, which requires a transaction hash to fetch details.
Without the Tx Index API, we cannot retrieve all transactions within
a specific time frame (e.g., a year). Only four bridges provide both
APIs, so we selected them for our analysis. The Chains Supported
column shows the chains each bridge claims to support, according
to their API documentation. However, these claims may not reflect
the actual data. For example, Allbridge claims to support 21 chains,
but we only collected data from 8 chains in 2023.

B.2 Transfer Events
Transfer Events. The Transfer function is central to cross-chain
transactions, involving the movement of tokens. In blockchain
ledger, transaction logs (receipts) record all events emitted by cross-
chain contracts, which we can obtain by their event signature. Typ-
ically, the SrcTx includes a TransferEvent recording the sender ad-
dress (SrcAddr) that transferred tokens (SrcAmt), while theDstTx in-
cludes a TransferEvent recording the cross-chain bridge transferring
tokens (DstAmt) to the receiver address (DstAddr). We conducted a
preliminary analysis of the TransferEvents in on-chain transactions.
Specifically, we matched the SrcAddr and DstAddr provided in the
bridge ledger with the TransferEvents in SrcTx and DstTx, respec-
tively. We found that 16,901 SrcTx and 4,775 DstTx lacked transfer
events, accounting for 2.01% of the total on-chain transactions.

C CDF of Time Cost
In this section, we present the cumulative distribution function
(CDF) of the time cost for four bridges. As most of the time costs
are relatively small, we limit the visualization to one hour for clar-
ity. Fig. 10 shows that, for most bridges, the cumulative time cost
approaches 100% around the 30 minutes, except forWormhole.
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Table 13: Cross-Chain Bridge API Support Overview

# Bridge Layer Chains Supported Tx
Info
API

Tx
Index
API

1 PolygonBridge L1-L2 ETH, POL
✗ ✗

2 ArbitrumBridge L1-L2 ETH, ARB
✗ ✗

3 RainbowBridge L1-L1 ETH, Near
✗ ✗

4 xDAIBridgex L1-L2 ETH, Gnosis
✗ ✗

5 WrapProtocol L1-L1 ETH, Tezzo
✗ ✗

6 AvalancheBridge L1-L1 ETH, AVAX
✗ ✗

7 RenBridge L1-L1 ETH, Bitcoin
✔ ✗

8 RSKTokenBridge L1-L2 ETH, RSK
✗ ✗

9 SovrynBridge L1-L2 ETH, RSK, BNB
✗ ✗

10 VoltageBridge L1-L2 ETH, Fuse, BNB
✗ ✗

11 Hot Cross L1-L2 ETH, AVAX, BNB
✗ ✗

12 CeloOpticsBridge L1-L2 ETH, POL, Celo
✗ ✗

13 ioTubeBridge L1-L2 4 chains
✔ ✗

14 Nomad L1-L2 4 chains
✗ ✗

15 ThunderCoreBridge L1-L2 4 chains
✗ ✗

16 Cross-ChainBridge L1-L2 5 chains
✗ ✗

17 AcrossProtocol L1-L2 5 chains
✗ ✗

18 SOYBridge L1-L2 5 chains
✔ ✗

19 Connext L1-L2 7 chains
✔ ✔

20 HyphenBridge L1-L2 7 chains
✔ ✗

21 SatellitebyAxelar L1-L2 14 chains
✗ ✗

22 BoringDAOBridge L1-L2 14 chains
✗ ✗

23 ChainPortBridge L1-L2 17 chains
✗ ✗

24 SynapseProtocol L1-L2 19 chains
✔ ✗

25 Orbit L1-L2 21 chains
✔ ✔

26 Allbridge L1-L2 21 chains
✔ ✔

27 OptimismBridge L1-L2 24 chains
✗ ✗

28 Multichain L1-L2 26 chains
✔ ✗

29 Wormhole L1-L2 30 chains
✔ ✔

30 CelercBridge L1-L2 34 chains
✔ ✗

L1-L1: Cross-chain transactions between different Layer 1 blockchains;
L1-L2: Cross-chain transactions between Layer 1 and Layer 2 networks.

D Inconsistency Detection Algorithm
This section presents a specific inconsistency detection algorithm
based on the definition provided in §6.

E Cross-chain Activities Analysis
E.1 Feature Selection
Table 14 lists the 11 features we selected for clustering. Our selection
is based on criteria such as interpretability, data characteristics,
informativeness, and the value of their distributions. Specifically,
we considered the following optional features for each cross-chain
transaction graph.
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Fig. 10: CDF of Time Cost (≤ 1 Hours)

Algorithm 1: Inconsistency Detection
1 Function LogFloor(𝑥):

Input: 𝑥 - the input number
Output: 𝑟 - the count of powers of 10

2 𝑟 = 0;
3 while 𝑥 ≥ 10 do
4 𝑥 =

⌊
𝑥
10
⌋
;

5 𝑟 = 𝑟 + 1;
6 return 𝑟 ;

7 Function Inconsistency Detection(𝑎𝑚𝑡𝑠 , 𝑎𝑚𝑡𝑑 , 𝑎𝑚𝑡 ′𝑠 , 𝑎𝑚𝑡 ′
𝑑
):

Input: 𝑎𝑚𝑡𝑠 , 𝑎𝑚𝑡𝑑 , 𝑎𝑚𝑡 ′𝑠 , 𝑎𝑚𝑡 ′
𝑑
- amounts in ledger and on-chain

transcations
Output: Inconsistencies - a list of detected inconsistencies

8 AmtInconsistency = False;
9 Type1Inconsistency = False;

10 Type2Inconsistency = False;
11 if 𝑎𝑚𝑡𝑠 ≠ 𝑎𝑚𝑡 ′𝑠 or 𝑎𝑚𝑡𝑑 ≠ 𝑎𝑚𝑡 ′

𝑑
then

12 AmtInconsistency = True;

13 𝑠1 = LogFloor(𝑎𝑚𝑡𝑠 ) ;
14 𝑑1 = LogFloor(𝑎𝑚𝑡𝑑 ) ;
15 𝑠2 = LogFloor(𝑎𝑚𝑡𝑠

′ ) ;
16 𝑑2 = LogFloor(𝑎𝑚𝑡𝑑

′ ) ;
17 if 𝑠1 ≠ 𝑠2 or 𝑑1 ≠ 𝑑2 then
18 Type1Inconsistency = True;

19 if 𝑠1 ≠ 𝑑1 or 𝑠2 ≠ 𝑑2 then
20 Type2Inconsistency = True;

21 return [AmtInconsistency, Type1Inconsistency, Type2Inconsistency];

Frequency. Transaction frequency reflects the level of activity and
patterns in user behavior. We selected the number of transactions
(TxCount) to measure the overall volume of transactions for a user.
We chose max weekly frequency (WkFreqMax) to capture the peak
weekly transaction frequency and to identify anomalous transaction
patterns. We did not select daily frequency due to the short time
frame and potential issues with time zones. Given that we only
have 12 months of data, using monthly frequency would be too
broad, so we opted not to include it.
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Table 14: Selected Features of Each Transaction Graph

# Features Description

1 TxCount Total number of transactions.
2 WkFreqMax Maximum number of transactions in a week.
3 SrcAmtMax Maximum amount transferred from the source transaction.
4 DstAmtMax Maximum amount received by the destination transaction.
5 ProfitNum Number of transactions yielding profit.
6 ProfitSum Total profit gained across all transactions in a graph.
7 LossSum Total loss incurred across all transactions in a graph.
8 DegAvg Average degree of nodes (addresses).
9 DegGini Gini coefficient measuring the inequality in node degrees.
10 AvgSPL Average shortest path length between nodes (addresses).
11 Density Density of each transaction graph, indicating connectedness.

Amount. We aimed to explore extreme cases in the cross-chain
activities, so we selected the maximum amount (SrcAmtMax and
DstAmtMax) instead of the average amounts. Since both the stan-
dard deviation (std) and Gini coefficient for amounts were relatively
sparse (with 59% of the data being zero), we did not select these
metrics. The values for SrcAmt and DstAmt follow a long-tail dis-
tribution. While log transformation is commonly used for such
data, we found that clustering results were worse after applying it.
Specifically, the silhouette scores for k-means were significantly
lower with the same k value. Therefore, we chose not to apply log
transformation.
Transfer Cost (Profit / Loss). Transfer profit and loss are key
indicators of cross-chain transaction activity. We selected profit
transaction count (ProfitNum), profit sum (ProfitSum), and loss
sum (LossSum) to measure the user’s overall gains or losses. Profit
sum represents the total profit across all transactions, while loss
sum captures the total loss. Due to the natural fluctuations in profit
and loss caused by liquidity variations in cross-chain transaction
pools, these fluctuations affect the standard deviation (std) and Gini
coefficient, making them unable to accurately reflect the volatility
of profit and loss in the transaction graph. Therefore, we did not
select them.
Graph. The transaction graph reflects activity among all of a user’s
addresses. We considered graph features such as degree, average
shortest path length, average clustering coefficient, and density. Since
the average and median degree values were similar, we selected
degree average (DegAvg) as the representative feature. We chose
the degree Gini coefficient (DegGini) because it better captures
the balance of degrees across nodes compared to the degree stan-
dard deviation (std). We selected the average shortest path length
(AvgSPL) to reflect the overall breadth of the transaction graph. For
clustering coefficient and density, since the former captures local
density and the latter represents overall density, we focused on
global characteristics and selected density.
Diversity.We considered chain diversity (number of unique chains)
but did not select it, as 83.6% of transactions involved only two
chains, offering low information value. Additionally, we find chain
diversity is strongly correlated with transaction count, which we
already included as a feature.

E.2 Cluster Methods
Common unsupervised clustering methods include K-means, DB-
SCAN (Density-Based Spatial Clustering of ApplicationswithNoise),

Affinity Propagation, Gaussian Mixture Models (GMM), and Hierar-
chical Clustering. We evaluated these methods on our dataset and
ultimately selected K-means for several reasons.

DBSCAN forms clusters by identifying high-density regions and
is effective at finding clusters of arbitrary shapes. However, it tends
to classify low-density clusters—such as those representing liquidity
pool attacks and arbitrage bots—as outliers, which risks overlooking
critical activities. Additionally, in our tests, DBSCAN produced
hundreds or even thousands of clusters, requiring extensive manual
effort to analyze the results. Other clustering methods face similar
problems.

We also experimented with Isolation Forest, an anomaly detec-
tion algorithm that isolates observations by randomly selecting
features and partitioning the data. Isolation Forest performed well
in distinguishing patterns within our dataset; over 95% of ordi-
nary transactions were classified as normal data, while other cate-
gories were correctly identified as anomalies. However, Isolation
Forest lacks clustering functionality, meaning it cannot group simi-
lar anomalous activities together.

In summary, K-means offers effective clustering with compu-
tational efficiency by setting an appropriate 𝑘 . Analyzing cluster
centroids and a few samples helps us differentiate between com-
mon and anomalous cross-chain transaction patterns, enabling easy
detection of unusual activities with minimal effort.

E.3 Elbow Method
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Fig. 11: Elbow Method for Optimal k

The elbow method is used to find the optimal number of clus-
ters by plotting distortion (within-cluster sum of squares) against
different k values. The aim is to spot the point where adding more
clusters doesn’t significantly reduce distortion. As shown in Fig-
ure 11, we plotted distortion for k values ranging from 2 to 30. The
plot shows a sharp decrease in distortion up to about k = 7, after
which the decrease slows down, forming an elbow between 7 and
10 clusters. This inflection point suggests that increasing k beyond
this range gives diminishing returns in reducing distortion.
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