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ABSTRACT

Public cloud platforms have leveraged Trusted Execution Environ-
ment (TEE) technology to provide confidential computing services.
However, TEE-protected applications still suffer from rollback or
forking attacks, in which their states could be rolled back to a stale
version or be forked into multiple versions, resulting in state con-

tinuity violations. Existing solutions against these attacks either
rely on weak threat models based on centralized trust (e.g., trusted
server) or suffer from large performance overheads (e.g., tens of
state updates per second). In this paper, we propose Narrator, a
secure and practical system, (1) that relies on a blockchain (i.e., de-
centralized trust) and TEEs, and (2) that provides high-performance
state continuity protection like unlimited and fast state updates for
applications in cloud TEEs. The intuition behind our design is sim-
ple. Our design uses the blockchain to initialize a distributed system
of TEEs, laying down the decentralized trust base with a small inter-
action overhead, while the distributed system provides performant
state continuity protection. Our distributed system adopts a cus-
tomized version of the consistent broadcast protocol and leverages
advanced techniques to make state updates processed with one
round trip delay on average. We build a proof-of-concept of Nar-
rator on Intel SGX (i.e., a representative design of TEEs) and do
extensive experiments to evaluate its performance. Our evaluation
results show that in a LAN environment with 5 nodes, Narrator
can support about 6k state updates per second, meanwhile keeping
the latency as low as 3 − 8ms. The throughput is 30× larger than
that in ROTE and 70× larger than using a TPM counter.
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1 INTRODUCTION

Trusted Execution Environments (TEEs), e.g., Intel Software Guard
Extension (SGX) [31], ARM TrustZone [10] and AMD Secure En-
crypted Virtualization (SEV) [51], enable applications to directly
compute on confidential data without leaking secrets to an adver-
sary who controls the computing infrastructures. For example, Intel
SGX provides isolation for protected computation from untrusted
operating systems (OS) by running codes and storing data in en-
claves. Public cloud platforms such as Microsoft Azure [2], Amazon
AWS [1] and Google Cloud [4] have already leveraged TEEs to pro-
vide confidential computing services, which aims to boost clients’
confidence in their outsourced data or code.

However, stateful applications in TEEs that rely on the untrusted
OS for persistent storage still suffer from rollback or forking attacks,
in which their states could be rolled back to a correct but stale
version or be forked into multiple versions, resulting in state conti-

nuity violation [15, 32, 40, 48, 52, 53, 58]. State continuity mandates
that when a protected module resumes execution from an inter-
ruption (e.g., reboots, power outages, or system crashes), it should
resume the same state before the interruption [48]. State continuity
violation has severe consequences in many applications, such as
payments [37], trusted storage [47], smart contract [33], as well as
authentication rate limiting [53]. For example, in a payment system
implemented in TEEs, an adversary can spend the same coins in
multiple payments by reverting the states of its account balance (i.e.,
double-spending attacks [41]). While there are prior works aiming
to provide state continuity for TEEs [12, 40, 48, 52, 53, 55], they fall
short in the following sense: First, hardware-based solutions like
the SGX monotonic counters [7], Trusted Platform Module (TPM)
counters [7], and NVRAM [48, 52, 53] are limited by the capacity of
the underlying non-volatile storage, which limits the rate of write
accesses to prevent worn out. For example, using a TPM counter
for a state update takes about 97ms [53]. Moreover, such devices
have a limited number of write operations in their lifecycle (e.g.,
0.3-1.4 million in NVRAM [53]). Therefore, these solutions cannot
be applied in cloud settings where thousands of state updates have
to be processed per second [39].
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Second, software-based solutions offload the trusted counter to
either a single trusted server [12, 55] or a collection of distributed
servers [40]. However, the formermerelymigrates the trust from the
cloud provider to yet another centralized entity, failing to address
the problem from its root cause, and the latter relies on trusted
administrators for system initialization [40], which still suffer from
the issue of trusting a single party. Therefore, in this paper, we
aim to answer the following question: How to design a system that
provides unlimited and fast state continuity protection for clients’
applications in cloud TEEs without relying on centralized trust?

An intuitive solution is to leverage blockchain [21, 41, 41, 42] as
a decentralized trust anchor. Blockchain such as Bitcoin [41] and
Ethereum [56] realizes an append-only log that does not rely on
a central authority. Prior studies [16, 33] have used blockchain
to record every state update of protected applications to prevent
rollback and forking attacks. However, such a design is not practi-
cal. Each state update requires a transaction to be processed and
confirmed by the blockchain, which is expensive in terms of long
transaction latency (e.g., up to one hour in Bitcoin and several min-
utes in Ethereum), low transaction throughput and high service
fees for each transaction (e.g., $1.6 on average for one transaction
in Bitcoin [3]).

We present Narrator, a system based on decentralized trust
to provide performant state continuity protection for cloud TEEs.
There are two key ideas behind our design. First, we keep the in-
teraction with blockchain rare and outside the critical path of fre-
quent state updates or reads. To this end, we only use an external
blockchain to initialize a distributed system of TEEs, laying down
the decentralized trust anchor (instead of recording frequent state
updates). The use of the blockchain removes the reliance on a cen-
tral trusted entity. Second, the distributed system initialized by the
blockchain can work as a trusted system to provide state continuity
protection for clients’ TEE applications. The distributed system
can be composed of TEEs located in the same data center since
they have a short message delay (e.g., RTT in about 1ms [6]). The
short internode message delay enables the system to process re-
quests quickly, which makes the whole system practical to meet
the demands of cloud scenarios.

There are several challenges to realizing the above system. First,
the distributed system needs to tolerate unexpected failures and pro-
vide fast state updates with a small trusted computing base (TCB).
To this end, Narrator adopts a customized version of the consis-
tent broadcast protocol [19, 49] rather than complicated consensus
protocols (e.g., such as Paxos [35] or Raft [46]) for state updates.
The insight behind our choice is that in Narrator, a protected
application can decide the order of its requests without reaching
an agreement with any other applications, however, consensus pro-
tocols have to ensure participants have the same global order of
all requests. Therefore, it is not necessary to use complicated con-
sensus protocols in Narrator. Second, Narrator has to enable
faulty nodes to resume their state and rejoin the system. In addition,
the restart protocol has to ensure that an adversary cannot create
parallel running systems to launch rollback and forking attacks. A
secure restart protocol design is challenging. We have found an
attack issue of the restart protocol in ROTE [40] (see Appendix A
[43]). Narrator adopts a similar restart protocol as ROTE, but
with a fix to the attack. Third, without a trusted central entity, all

TEEs have to complete the initialization process with the help of
a blockchain in a distributed and automated manner. To make the
initialization process efficient, we use a leader pattern, in which a
TEE node is selected as the leader to coordinate with others. The
key idea is that the leader can perform mutual attestation with
other nodes to build a chain of trust.

We provide a formal security analysis of Narrator to show that
TEE applications can use Narrator to protect their state continu-
ity under a powerful adversary. We also implement Narrator on
SGX and evaluated its performance in both LAN and WAN envi-
ronments. Our evaluation shows that Narrator can support about
6k state updates per second, meanwhile keeping the latency as low
as 3 − 8ms in a LAN environment with 5 nodes. The Narrator
TCB increment is moderate (4300 LoC). While the proposed scheme
is originally designed for Intel SGX, the method can be easily ex-
tended to different types of TEEs, e.g., AMD SEV, and even between
different types of TEEs, as long as they adopt similar systems.
Contributions. We make the following contributions:
• We design Narrator, a system to provide secure and practical
state continuity protection for cloud TEEs. Our design creatively
uses a blockchain to initialize a distributed system of TEEs to avoid
expensive blockchain interactions.
• We propose a simple and efficient protocol for the distributed
system based on consistent broadcast protocol. We also identify
several performance bottlenecks and use tailored techniques to
promote performance.
• We find the restart protocol of ROTE has a security issue, in
which an adversary can successfully launch rollback and forking
attacks. We propose a countermeasure to fix the security issue and
adopt the fixed one in our system.
• We implement Narrator on SGX and have done experiments in
both LAN and WAN environments to show its efficiency. Evalua-
tion results show that Narrator can process thousands of state
updates per second, and meanwhile has a low response time for
state updates and reads of several milliseconds.

2 BACKGROUND

2.1 Intel Software Guard Extension

In this work, we build our system atop Intel Software Guard eXten-
sions (SGX) [31], which is a microarchitectural extension to Intel
processors that provide shielded execution environments, called
enclaves, for applications to protect their sensitive data from un-
trusted system software. An SGX application is divided into trusted
and untrusted components, with the trusted components protected
by the enclaves.
Enclave identity.When an enclave is created, the hash value of
its initial code and data is calculated by hardware and used as the
enclave identity (i.e., MRENCLAVE). Additionally, each enclave
is signed by its developer—dubbed Independent Software Vendor
(ISV) by Intel—before release. The hash value of the public signa-
ture verification key is used as the enclave’s sealing identity (i.e.,
MRSIGNER).
Attestation. SGX provides two attestation mechanisms: local at-
testation (LA), by which a local enclave verifies another enclave,
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and remote attestation (RA), by which the remote user verifies that
the enclave code is running on a legitimate Intel CPU with proper
microcode version and the enclave identity is the same as expected.
A successful RA will allow the user to trust the enclave environ-
ment as well as the integrity of the enclave code. Secrets can be
provisioned into the enclaves once a secure channel is established
using remote attestation.
Sealing. In SGX, enclaves can securely store data outside the pro-
tected memory by the sealing mechanism. Specifically, an enclave
protects the integrity and confidentiality of data by encrypting it
with a private key called the sealing key. The sealing key can be
configured accessible to all enclaves with the same MRENCLAVE
or with the same MRSIGNER.

2.2 Rollback and Forking Attacks

Stateful enclave programs have to seal and store their state data
on the disk such that they can resume their state after unexpected
interruptions (e.g., system reboots or crashes). A powerful adversary
that controls the OS or the hypervisor can schedule enclaves (e.g.,
stopping, killing, or restarting) and provide enclave programs with
stale versions of sealed data. These abilities enable the adversary
to launch rollback and forking attacks to violate state continuity.
• Rollback attack. The adversary can restart an enclave program
and replay previously sealed state data to it. The stale data can
bypass decryption and integrity checks, and will roll the enclave
program’s state back to a previous one. Furthermore, when reading
any state variable, the instance will return stale data.
• Forking attack. The adversary creates multiple instances of the
same enclave program with forking states. In particular, the ad-
versary simultaneously runs multiple instances from the same
state, and then feeds each instance with different input data. As
a result, the execution and final states of these enclaves would
be different and consequently, these instances reach to different
states. For example, in a limited password guessing program [53],
an adversary runs multiple enclave instances and tries different
passwords for each instance.

2.3 Revisiting Existing Rollback Preventions

Existing rollback prevention methods usually bind each sealed state
data on the disk with a freshness tag recorded in a trusted subsystem
(rather than directly storing whole state data in the subsystem).
After reboots, the freshness tags enable the enclave program to
check whether the state data retrieved from the OS is the latest.

2.3.1 Counter vs. State Digest. There are two abstractions of the
freshness tags: trusted monotonic counter or state digest.
Trusted monotonic counter. A trusted monotonic counter is a
tamper-resistant counter whose value, once incremented, cannot
be reverted to a previous value [50]. When a protected application
updates its state, it has two operations: incrementing the counter
and storing the state (and/or the input) with the counter value in
the disk. The sequence of these two operations further determines
two methods: inc-then-store [40], in which the counter is first
incremented, and store-then-inc [39, 53], in which state persistence
is first executed before incrementing the counter.

Table 1: The comparison with existing methods to protect

state continuity. RP, FP and CT & H are short for rollback

prevention, forking prevention, and centralized trust & hard-

ware, respectively. The performance is measured by the pro-

cessed state updates per second and is ranked into the low

(≈ 10), medium (≈ 100) and high (≈ 1000). The costs refer

to fees paid for additional hardware or service fees and are

ranked into the low (< $100), medium ($100−$10000) and high

(> $10000) for one million state updates.

Protocols RP FP Liveness Performance CT & H Cost

ROTE [40]∗ ✗ ✗ ✗ Medium ✓ Low
Ariadne [53] ✓ ✗ ✓ Low ✗ Low
ADAM-CS [39] ✗ ✗ ✓ High ✗ Low
Memoir [48] ✓ ✗ ✓ Low ✓ Medium
Blockchain [16, 33] ✓ ✓ ✓ Low ✗ High
Narrator ✓ ✓ ✓ Medium ✗ Low

∗We find that in ROTE, an adversary can launch rollback and forking
attacks through the restart protocol. Due to space constraints, we illus-
trate these attacks and fix them in Appendix A [43].

Trusted state digest. A trusted state digest is a tamper-resistant
digest of application states recorded in the trusted subsystem. There
are two explicit techniques to use state digests: execute-then-record
and record-then-execute. Given a request, in the first technique, the
request is first executed, and the updated state is recorded, whereas
in the second one, the request together with the current state is
recorded, and then the request is executed.
Summary. Although both abstractions can provide state freshness,
the main difference is that the monotonic counter approach does
not provide a unique binding between stored states on the disk with
the counter value. In other words, there may exist multiple stored
states with the same counter value by strategically killing/restarting
enclaves. As a result, the inc-then-store method does not have
liveness [40], while the store-then-inc method is vulnerable to the
forking attack [39, 53]. Therefore, our design adopts the state digest
abstraction.

2.3.2 Hardware vs. Software. The above two abstractions can be
realized in hardware-based, software-based, or hybrid subsystems.
Hardware. Hardware realizations include SGX monotonic counter
[7]1, TPM monotonic counter [39], and TPM NVRAM [48, 52, 53].
These realizations have limited performances including slow write
and read response time, and limited write cycles. For example,
incrementing a TPM counter for a state update takes about 97ms,
and reading a counter for a state check takes about 35ms [53].
Besides, the number of write cycles for TPMNVRAM (used to record
state digest) or SGX counter is only several million times [40, 48].
To address the limited write cycles, Memoir [48] uses additional
hardware accessory, i.e., uninterruptible power source (UPS) [48]
to reduce frequent writes.
Software. As said previously, software implementations [40, 55]
rely on weak threat models based on centralized trust. A detailed
comparison with ROTE is provided in §7. By contrast, the ap-
proach [16, 33] that uses blockchain has a strong threat model
(i.e. decentralized trust), but suffers from poor performance and is
economically infeasible (§1). The root cause is that blockchain relies

1In the latest version, SGX does not support monotonic counters anymore [39].
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on Byzantine consensus protocols (e.g., PBFT [20] or Nakamoto
Consensus [41]) to make sure all nodes have the same transaction
sequence, which usually has high communication overhead. In ad-
dition, in a decentralized system, participants are geographically
located, which leads to a high message propagation delay and poor
performance.
Hybrid system. ADAM-CS [39] is a hybrid system that provides
virtual monotonic counters based on a set of distributed TPM coun-
ters. The hybrid mode enables ADAM-CS to support thousands of
increments per second. However, ADAM-CS adopts the inc-then-
store method, which has a vulnerability window (VW), i.e., the
time taken from the last stabilized states to the system crashing or
shutting down [39]. In ADAM-CS, the VW is around 10 ms, during
which the updated state can be rolled back.
Summary. Table 1 provides a brief summary of existing solutions.
To prevent memory wear out, hardware solutions [48, 53] have
limited performance for state updates. The hybrid system ADAM-
CS [39] can process thousands of state updates per second but
has a vulnerability window for rollback attacks. Existing software
systems either rely on a weak threat model [40] or have poor per-
formance [16, 33]. In a nutshell, none of these solutions can achieve
practical and secure state continuity protection for cloud TEEs.

2.4 Blockchains

Cryptocurrencies such as Bitcoin [41] rely on a linked list of block
structures, referred to as the blockchain. Blockchain systems lever-
age Byzantine consensus to enable a set of mutually distrusting
nodes to reach an agreement on an ever-growing blockchain, which
further serializes and confirms a list of transactions. There are two
types of Byzantine consensus protocols. The first is Nakamoto
Consensus (NC) and its variants [24, 25, 41], which are simple, tol-
erant of churn, and can support thousands of participating nodes.
However, NC only provides probabilistic security, in which a trans-
action has the probability to be reverted due to forks [41]. The
rollback of transactions would violate the state continuity of en-
claves’ states [16]. Besides, clients have to keep synchronized with
blockchains to confirm transactions (e.g., the longest chain rule [41]).
Since enclaves’ communication interfaces may be controlled by the
adversary, the synchronization cannot be guaranteed, and enclaves
cannot easily and securely confirm transactions [23, 33].

Another type is Byzantine Fault Tolerant (BFT) consensus such
as PBFT [20], Tendermint [18] and HotStuff [57]. BFT protocols
rely on a group of participants with publicly known identities (e.g.,
public keys) that forms a committee to manage the system. The
committee runs a multi-phase commit protocol (e.g., two-phase
in PBFT [20]) to produce blocks. Each committed block has an as-
sociated publicly verifiable authenticator (i.e., a set of signatures
from the committee members), that can be validated by anyone.
Unlike NC, BFT protocols can provide strong security, i.e., a com-
mitted block and the associated transactions cannot be reverted, as
long as less than one-third of committee members are Byzantine.
Note that despite the permissioned setting, BFT protocols can be
used to build either permissioned blockchains [9] or permissionless
blockchains [28]. In this work, we choose BFT-based blockchains
because of their strong security.

Table 2: Summary of Notations.

Term Description Term Description

𝑃 Enclave program 𝑆𝑖 Program state
𝐼𝑖 Input request 𝑂𝑖 State output
𝑟𝑖 Execution randomness L Blockchain
𝑛 Number of SEs 𝐼𝐷 Blockchain identifier
𝑓 Number of faulty SEs 𝑆𝐷𝑖 State digest
𝑢𝑖𝑑 SEs’ unique platform identifier (𝑠𝑘, 𝑝𝑘 ) Key pair

3 OVERVIEW

In this section, we present the problem statement, an overview
of our design, and the threat models. Table 2 provides a list of
commonly used variables and terms.

3.1 Problem Statement

The states of applications running in enclaves can be modelled by
a multi-step interactive, probabilistic program P [33], which can be
further abstracted as:

P(S𝑖 , I𝑖 ) → (S𝑖+1,O𝑖 ) .

Given state S𝑖 , the enclave executes the request I𝑖 from OS, and
then enter the next state S𝑖+1 with an output𝑂𝑖 . Here, the program
must either complete the process of the request and then update its
state, or not advance its state at all. To guarantee crash resilience
(i.e., liveness property), each state transition of 𝑃 has to be deter-
ministic [33, 48, 53]. The non-determinism factors of a program like
time, random numbers, and multithreading can be converted to be
deterministic by various techniques [13, 14, 33, 45] and modeled
with the input 𝐼𝑖 . The program 𝑃 can well represent applications like
authentication rate limiting [53], smart contract [33], and payment
system [37].

Stateful programs should resume the same state before interrup-
tions (e.g., reboots or system crashes) [48]. The above guarantee is
also referred to as state continuity [15, 32, 40, 48, 52, 53, 58], which
can be further decomposed into safety and liveness properties de-
fined below.

Definition 3.1 (Safety). A stateful enclave program 𝑃 should never
enter into a stale state or inconsistent state with the following
guarantees:
• Rollback prevention. Suppose an enclave program 𝑃 advances
to state 𝑠𝑖 at time 𝑡 , no enclave instance of 𝑃 will resume states 𝑠 𝑗
( 𝑗 < 𝑖) after time 𝑡 .
• Forking prevention. Suppose two instances of an enclave pro-
gram 𝑃 start from the same state 𝑠𝑖−1 and then advance to states
𝑠𝑖 and 𝑠′𝑖 , respectively, then 𝑠𝑖 = 𝑠

′
𝑖
.

Definition 3.2 (Liveness). An enclave program can resume its
state after unexpected failures, like power shutdown, in a non-
adversarial setting.

We stress that because TEEs do not prevent denial-of-service
attacks from the adversary, liveness can only be achieved without
active attacks. For example, the adversary makes the majority of
State Enclaves (SEs) crashed in our design (§5.1). Therefore, we
restrict our definition of liveness to settings where compromising
liveness is not the goal of attacks. Our aim is to preserve liveness
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Figure 1: The architecture of Narrator.

when encountering unexpected system failures. In this work, we
aim to achieve the following goals:
1) Security goals. We attempt to design a system to protect the
state continuity, i.e., safety and liveness properties, of cloud TEE
programs, without relying on any trust assumption on centralized
parties. Besides, our design should neither require any hardware
changes nor (significantly) increase its attack surfaces.
2) Performance goals.We are particularly interested in providing
practical state continuity protection for cloud TEEs. So our design
should have low latency for state update and read operations (e.g.,
in several ms), high throughput for processing enclave programs’
requests (e.g., thousands of state updates per second), and unlimited
state updates.

3.2 Overview

Figure 1 illustrates the system architecture of Narrator. The core
of Narrator is a performant distributed system, which contains
𝑛 = 2𝑓 + 1 SEs running on different SGX-enabled platforms. Each
SE can provide state continuity service to all the Application En-
claves (AEs) on the same platform. To tolerate unexpected failures,
Narrator adopts a customized version of the consistent broadcast
protocol [19, 49] rather than complicated consensus protocols (e.g.,
such as Paxos [35] or Raft [46]) for state updates. The insight be-
hind our choice is that in Narrator, an AE can decide the order
of its requests without reaching an agreement with any other AEs,
however, consensus protocols have to ensure participants to have
the same global order of all requests. Therefore, it is not necessary
to use complicated consensus protocols in Narrator. The simple
protocol design also leads to a small TCB. Besides, Narrator also
adopts several advanced techniques such as checkpointing, batch
progressing, and pipelining for performance optimization.

To defend against rollback and forking attacks, the distributed
system has to be securely initialized and configured based on some
trust anchors. In Narrator, we use an external blockchain to ini-
tialize the system, which lays down the decentralized root of trust.
Building a distributed system on top of a blockchain keeps the
interaction with the blockchain rare and outside the critical path
of state updates or reads, which makes the design performant and
economically feasible.

3.3 System Model

We consider a distributed system of 𝑛 = 2𝑓 + 1 SGX-enabled plat-
forms on a cloud, a BFT-based blockchain L, and a group of authen-
ticated clients. The blockchain can provide a public append-only log
for storing public data. Clients run applications on the SGX-enabled
platforms, and each application operates one or more AEs. Each
AE can access one SE on the same SGX-enabled platform, and so

there are 𝑛 = 2𝑓 + 1 SEs located on different platforms. An SE is
considered to be faulty if it crashes down or does not complete the
restart protocol after rebooting. We assume that at most 𝑓 SEs are
faulty at any time.
Threat model. Following related works [40, 48, 53], we consider
a powerful adversary (e.g., a malicious cloud administrator or an
intruder) that can modify the system software stack (i.e., OS or
the hypervisor) on any SGX-enabled platforms, but cannot extract
the memory contents or manipulate the running code in enclaves
including both AEs and SEs. In particular, the adversary can sched-
ule the execution of the enclaves including both AEs and SEs and
replay their persistently stored data. The adversary cannot forge
AEs’ and SEs’ messages since AEs build secure communication
channels with the local SE (on the same SGX-enabled platform)
using local attestation, and SEs build secure channels with each
other using remote attestation. However, the adversary can eaves-
drop, modify, and replay their messages, including the ones to and
from the blockchain L. Therefore, there is no assumption about
the reliability of the communication network.

We assume that the attestation mechanism provided by SGX can
guarantee that the outputs generated by the enclave are indeed from
the code that is attested. Besides, we assume that the blockchain can
provide a publicly-verifiable authenticator for committed transac-
tions (§2.4), and the adversary cannot control the blockchains (i.e.,
corrupting more than one-third of committee members) to violate
its security property or forge authenticators for non-committed
transactions. The adversary also cannot break standard crypto-
graphic primitives. We do not consider Denial-of-Service (DoS)
attacks on SEs, which could be launched by malicious AEs.

4 NARRATOR DESIGN

In this section, we present Narrator, a secure and practical system
to protect the state continuity of cloud TEE programs. Narrator
contains four important components: system initialization without
using trusted central entity (§4.3), state update protocols (§4.4 and
§4.5), state read protocol (§4.6), and AEs’ and SEs’ restart protocol
(§4.7). In particular, state update protocol contains two designs:
StaUp-Basic (§4.4) and StaUp-Opt (§4.5). The latter is optimized
to reduce the state update latency and improve the throughput at
the price of a slightly larger TCB size.

4.1 State Continuity Technique

Narrator uses the state digest abstraction to maintain the en-
claves’ state continuity (§2.3). In particular, Narrator adopts the
record-then-execute technique, in which the enclave first seals and
stores ⟨S𝑖 , I𝑖 , 𝑟𝑖 , SD𝑖−1⟩ on the disk and records the hash SD𝑖 in the
trusted module, then executes the request, updates its state to S𝑖+1
and reveals the output O𝑖 . The state digest SD𝑖 = H(S𝑖 | |I𝑖 | |𝑟𝑖 ) en-
ables the enclave to recover states without compromising security.
If the enclave crashes before the output is published, it can redo
requests I𝑖 and reveal the outputO𝑖 . Here, to ensure the enclave will
produce the same output when redoing the requests after rebooting,
the program should be deterministic.

Narrator does not adopt another technique, execute-then-record,
because of its vulnerability to side-channel attacks [17, 54]. Specif-
ically, an adversary may repetitively replay the input requests I𝑖
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on the same state S𝑖 and then observe side channels (e.g. the size
of the encrypted state and output, and the time to perform the
request) before allowing the state to be updated. For example, in a
limited password guessing application, the adversary can try differ-
ent passwords and then observe the timing side channel before it
finds the right one. Although the side-channel attack and the asso-
ciated countermeasures [29, 44] are not the focus of this work, we
hope our design does not introduce new attack surfaces. Therefore,
Narrator adopts record-then-execute technique. Besides, all sealed
data and transmitted messages are kept with the same size (e.g.,
using padding) such that an attacker cannot infer any information
from the size.

4.2 Architecture

Figure 1 illustrates the Narrator architecture, which contains 𝑛
Intel SGX-enabled platforms managed by a cloud provider, and an
external blockchain L. Each SGX-enabled platform runs multiple
enclave instances, which can be divided into two types:
• Application Enclave (AE). AEs are enclave instances running
applications created and uploaded by Independent Software Ven-
dors (ISV). AEs handle clients’ requests and return corresponding
outputs.
• State Enclave (SE). SEs are enclave instances that runNarrator
to provide state continuity service for AEs. Each AE can link to a
local SE (also called the target SE) on the same platform and use
Narrator library to protect its state continuity.
Due to space constraints, a detailed discussion of the above archi-
tecture and possible variants is provided in Appendix C.2 [43].

Narrator library provides two interfaces for AEs to protect
their state continuity:
• writeState(𝑣𝑎𝑙𝑢𝑒) → 𝐴𝐶𝐾 : The interface enables an AE to write
a new state digest to the Narrator system. If the operation suc-
ceeds, an 𝐴𝐶𝐾 is returned to acknowledge the AE.
• readState() → 𝑣𝑎𝑙𝑢𝑒: The interface enables an AE to read its
state digest from the Narrator system. Note that if the AE did
not write any values previously, it gets an empty value (Null).
Given a state update, an AE first seals and stores a state snapshot

on the disk and then calls writeState() to store associated state
digests on Narrator. Once receiving an ACK, the AE can safely
update its state and publish the output. When the AE needs to
verify the freshness of data provided by OS after reboots, it calls
the function readState() to obtain its latest state digest.

4.3 System Initialization

We aim to realize an initialization protocol, in which all SEs au-
tonomously interact with a BFT-based blockchain to complete the
configuration (without involving any trusted central party).

4.3.1 Blockchain Interfaces. All SEs can interact with a BFT-based
blockchain L to complete the initialization process. The blockchain
L further provides a key-value (KV) store abstraction [26]. These
blockchains enable a client identified by ID to register a tuple
⟨𝑘𝑒𝑦, 𝑏𝑙𝑜𝑏⟩ to the blockchain, where 𝑏𝑙𝑜𝑏 is an arbitrary string
that is mapped with the key. The identity ID of a client is referred
to as the blockchain identifier, which can be generated from the
public key of a digital signature scheme. When the tuple is first

②

①

④

SE1 

(Leader)

SE3SE2 

              Building secure 

communication channels 

③

Identity establishment

Blockchain L

First initialization check

Recording initialization

Figure 2: The initiation architecture.

registered, a read-only entry with the identifier and the key is also
created. Only the client identified by ID has the right to update the
associated value with the key, whereas any party can read the value
associated with the key. We model the interfaces of blockchain as:
• Blockchain.write(ID, ⟨𝑘𝑒𝑦, 𝑏𝑙𝑜𝑏⟩) → 𝜎 : The interface enables a
party with an identifier ID to post a string 𝑏𝑙𝑜𝑏 associated with
the 𝑘𝑒𝑦 on the blockchain. Once succeed, there is a returned au-
thenticator 𝜎 over the request. Clients can run a public algorithm
to verify whether the authenticator 𝜎 is authentically generated
by the blockchain.
Each write request contains a signature created by the client. For
the first write of 𝑘𝑒𝑦, a read-only entry with the identifier 𝐼𝐷 and
𝑘𝑒𝑦 is created. After the entry is created, the blockchain can check
whether the client is properly authorized to perform the subse-
quent write operations (by verifying the associated signature).
• Blockchain.read(ID, 𝑘𝑒𝑦) → (𝑏𝑙𝑜𝑏, 𝜎): The read algorithm re-
turns the blob associated with 𝑘𝑒𝑦 and the authenticator 𝜎 . The 𝜎
enables the party to check the integrity of the return value.
For implementation, information of the blockchains (e.g., gen-

esis block) is hard-coded in SEs, which enables them to do back-
ward verification of these authenticators. BFT-based blockchains
like Algorand provide techniques to perform fast bootstrapping,
which can accelerate the verifications [36]. Besides, in reality, the
blockchain identifier can be merged with the 𝑘𝑒𝑦, by which a tuple
⟨𝑘𝑒𝑦, 𝑏𝑙𝑜𝑏⟩ represents an account, 𝑘𝑒𝑦 is the identity (also known
as an address [56]), and 𝑏𝑙𝑜𝑏 is the associated value.

4.3.2 Initialization Process. The initialization process should en-
sure that there is only one legitimate group of 𝑛 SEs with known
identities running on 𝑛 different SGX-enabled platforms, i.e., no
forking groups. Without the above guarantee, AEs can link to more
than one group, and each group can store a different state; the in-
consistency of stored states will lead to a state continuity violation.
Specifically, there are two challenges in the initialization process.
First, all SEs have to build the PKI in a distributed way, which usu-
ally incurs a high message complexity. Second, to guarantee there
is only one initialized group, a centralized system usually uses a
trusted administrator to provide secret provisioning. In our design,
without such a trusted party, an alternative way has to be proposed.

To address the first challenge, our design utilizes the leader
pattern, in which an SE is delegated as the leader to coordinate
other SEs. The leader can be delegated by the cloud provider, and
the leader selection does not affect the security. The leader first
performs mutual attestation with every other SE, by which they
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can attest to the identity of each other. After that, they build a chain
of trust. Then, the leader can collect and distribute public keys from
other SEs. To address the second challenge, our design relies on the
interaction with the blockchain. During initialization, an SE has to
post a record ⟨𝑢𝑖𝑑, 𝑏𝑙𝑜𝑏⟩ on the blockchain, where 𝑢𝑖𝑑 is a unique
identifier of the enclave program on the platform, and 𝑏𝑙𝑜𝑏 is the
configuration information. When another SE on the same platform
starts the initialization, it will generate the same 𝑢𝑖𝑑 and find the
previous record in the blockchain, then aborts the initialization.
As a result, no forking SE can be initialized in the same platform.
Figure 2 illustrates the main procedure, which contains four steps.
❶ Building secure communication channels. The leader uses
remote attestation to mutually attest to every other SE and mean-
while builds secure communication channels with all of them. In
particular, when created, each SE (including the leader) calculates its
enclave identity, i.e., MRENCLAVE, and compares its identity with
others’ to verify whether the attested enclave is another SE [22].
❷ Identity establishment. All SEs (including the leader) generate
an asymmetric key pair (𝑝𝑘, 𝑠𝑘), and send their public keys to the
leader. Then, the leader distributes the list of received public keys
(denoted by 𝐶𝑒𝑟𝑡 ) to other SEs such that they can authenticate and
build secure channels between each other.
❸ First initialization check. Each SE sends a read request to the
blockchain via interface Blockchain.read(ID, 𝑢𝑖𝑑) (§2.4), where ID
is the blockchain identifier of the SE (derived from its 𝑝𝑘), and 𝑢𝑖𝑑
is the unique identifier of the SE on an SGX-enabled platform. SEs
created on the same platform have the same 𝑢𝑖𝑑 . If returned 𝑏𝑙𝑜𝑏 is
not null, the SE will abort the initialization since another SE on the
same platform has been initialized. Otherwise, it executes the next
step.
❹ Recording initialization. An SE sends a write request to the
blockchain via the interface Blockchain.write (ID, ⟨𝑢𝑖𝑑,H(𝐶𝑒𝑟𝑡)⟩).
When receiving a valid authenticator 𝜎 over the write request from
the blockchain, the SE creates an SE state table containing state
entries for other SEs and an empty AE state table, as shown in
Figure 3. In particular, the SE puts the list of public keys 𝑝𝑘𝑆𝐸𝑖 to
the SE configuration table and establishes pair-wise session keys
𝑘𝑒𝑦𝑆𝐸𝑖 with all other SEs by running authenticated key agreement
protocol. The SE sets the state digest for other SEs in the SE state
table to Null when initializing. Next, the SE seals and stores its key
pair, SE configuration table, and AE state table (see Figure 3). After
that, the SE completes the initialization and can serve AEs’ requests.

The identifier 𝑢𝑖𝑑 in the step ❸ can be realized by using the hash
value of the seal key (binded with the SEs’ identity MRENCLAVE),
which can uniquely identify SEs on the same SGX-enabled platform.
The read operation cannot guarantee to obtain the latest blockchain
information, since the communication interface can be in the con-
trol of the adversary. However, this is not a concern, because an SE
can only be initiated after a successful Blockchain.write(), which
guarantees that the key of the SE has never been registered with
the blockchain before.

More importantly, SEs should keep alive during step ❹. If the
SE crashes before receiving 𝑏𝑙𝑜𝑏, it cannot be initialized anymore.
This is because normal crashes cannot be distinguished from ma-
licious behaviors for creating forking groups. However, since the

Signing key: (sk,pk)

SE configuration table:
pkSE1 , keySE1

...

AE state table:
 idAE1 , keyAE1 , SDAE1

...

SE state table:
pkSE1 , SDSE1 , j, seq  

...

Figure 3: Layout of an SE’s local memory. The data in the

gray rectangle is sealed for state snapshot.

initialization process only happens once, the above failure is not a
problem.
AE registration.When an AE starts to use Narrator, it performs
the local attention on the target SE. The target SE’s identity MREN-
CLAVE can be hard-coded to the AE implementation or provisioned
by ISV. Then, AE can run an authenticated key establishment proto-
col with the target SE, by which they can share a key 𝑘 . After that,
SE creates an entry for the AE, which contains a unique identity of
AE (e.g., MRENCLAVE), the shared key, and an empty state digest
(see AE state table in Figure 3).

4.4 State Update

When the target SE is ready to process AEs’ state update requests,
it follows the protocol shown in Figure 4. The protocol is based
on Echo broadcast [49] and its variant [40], but we made some
customizations to meet our design goals. A detailed discussion
of the difference is provided in §7. AEs’ and SEs’ messages are
transmitted in encrypted and authenticated channels using secret
session keys. Besides, a nonce is added to each message to prevent
the message replay attack. The detailed procedures are listed as
follows:
❶ When receiving a request I𝑖 , the AE first seals and stores a state
snapshot ⟨S𝑖 , I𝑖 , SD𝑖−1⟩ on the disk, where the state digest SD𝑖−1 is
H(S𝑖−1 | |I𝑖−1). Then, AE calls the functionwriteState(SD𝑖 ) to update
its state digest. For clarity, we assume that needed randomness 𝑟𝑖
is attached with I𝑖 .
❷When receiving the state update request, the target SE first caches
it in a First-In-First-Out (FIFO) queue. Once the request is at the
head and there are no other serving requests, the SE seals and stores
its state snapshot ⟨S𝑗 , I𝑗 , SD𝑗−1⟩ on the disk, where I𝑗 is the AE’s
state digest SD𝑖 .
❸ The SE sends prepare message ⟨Prepare, SD𝑗 , ( 𝑗, 𝑠𝑒𝑞)⟩ to all SEs
(including itself) in the group. After reboot, an SE has to retrieve
the latest state digests from other SEs (§4.7), so the index 𝑗 is used
to compare the freshness of state digests. Second, if a state update
process is not completed (caused by unexpected failures), and later
another request is provided, other SEs would store different SD𝑗 .
We use 𝑠𝑒𝑞 to distinguish the state digests with the same index,
which could be caused by SEs’ crash failures. After reboot, an SE
obtains the latest state with the associated index and 𝑠𝑒𝑞, it will
increase 𝑠𝑒𝑞 by one and re-execute the state (§4.7).
❹ When receiving the prepare message, each SE updates the state
digest of the target SE in the memory and sends back an Echo
message that includes SD𝑗 .
❺ After receiving more than 𝑓 + 1 Echo messages, the target SE
sends a decide message ⟨Decide, SD𝑗 , ( 𝑗, 𝑠𝑒𝑞)⟩ to all SEs in the
group.
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Figure 4: The overview of the state update protocol.

❻ When receiving the decide message, an SE checks whether it
has echoed the associated prepare message. If yes, it sends back
an ACK that includes SD𝑗 .
❼ When receiving more than 𝑓 + 1 ACKs, the target SE updates
the AE’s state digest and returns an ACK that includes SD𝑖 . When
receiving the ACK, the AE can safely update its state to S𝑖+1 and
publish associated output O𝑖 .

4.5 Optimized State Update

The state update protocol in §4.4 is simple and can be implemented
in a small TCB size, which is referred to as StaUp-Basic. Despite
the simplicity, StaUp-Basic has several performance limitations.
First, when processing a request, an AE has to seal and store a state
snapshot in its local disk. For some applications like payments [37],
the whole state is large, and so the seal and store operation incurs
a heavy task for encrypting the data and IO writing. Evaluation
results show that it takes severalms to seal and store 100KB data on
the disk (§6). Second, an SE processes AEs’ state updates in series.
The serialization limits SE’s capacity of processing requests per
second (i.e., throughput). In addition, when the number of supported
AEs and associated requests are large, the low throughput will lead
to a long service delay. Third, each update involves two rounds of
message exchanges among SEs, which is the main factor impacting
the latency and throughput.

To reduce the performance overhead, we propose a performant
variant StaUp-Opt that can overcome the above limitations. StaUp-
Opt adopts three optimizations: periodical checkpoint, batch pro-
cessing, and pipelining. The periodical checkpoint enables AEs to
store small requests rather than large states (optimizing step ❶ and
❷ in §4.4); the batch processing allows SEs to amortize the over-
head for each state update (related with steps ❷ and ❼ in §4.4); and
the pipelining structure makes a request only require one round of
messages exchanges on expectation (related with step ❸-❼ in §4.4).
1) Periodical checkpoint. Our first optimization is to leverage
checkpoints to reduce the size of sealed and stored data for AEs.
For clarity, we describe the optimization in the view of AEs, which,

Seal&Store Prepare DecideI1

I2

Echo Echo

Seal&Store Prepare DecideEcho Echo

Figure 5: The pipelining structure in StaUp-Opt

however, also works for SEs. The key insight is that since the pro-
gram is deterministic, the latest state can be recovered by executing
all history inputs. This implies that AEs only need to seal and store
input requests on disk and meanwhile record a summary of input
history in SEs. For most applications, the input is usually much
smaller than the whole application state.

However, the above solution requires AEs to store all history
inputs (i.e., large storage space) and to redo all requests in sequence
to recover the latest state (i.e., long recovery time) after rebooting.
For these reasons, AEs periodically generate checkpoints (i.e., state
snapshots) and only store and redo inputs after the last snapshot
for state recovery, which achieves a balance between these two
methods. To this end, we have to modify procedure ❶ in §4.4. AE
first stores the request (I𝑖 , 𝑖) on disk. Then, it calls the function
writeState(SD𝑖 ), where SD𝑖 = H(SD𝑖−1 | |I𝑖 ). The SD0 is defined as
⊥ when the system is initialized. For every 𝑘 requests, the AE seals
and stores an additional state snapshot ⟨S𝑗𝑘 , SD𝑗𝑘 ⟩ ( 𝑗 = 1, 2, ...) on
the disk. When rebooted, an AE can retrieve the latest checkpoint
and all requests after the checkpoint from OS, read its state digest
in SEs, and securely recovers its state.

Storing input requests rather than states has another benefit.
The sealed and stored data is not irreverent with the current state
(except for the periodical checkpoint). Therefore, an SE can do
this operation before the previous state update is done, which cuts
off the operation time for state updates and further supports an
efficient pipelining structure.
2) Batch processing. Our second optimization is to utilize batch
processing to promote SEs’ capacity for request processing. The
idea behind our optimization is that each target SE has to serve
multiple AEs, which run different applications. The state update
requests between these AEs are independent, and so can be pro-
cessed simultaneously. In other words, there is no need to serially
process different AEs’ state update requests.

In procedure ❷, an SE fetches a batch of requests (up to a max-
imum number 𝑚) from the queue and treats these requests as a
single one. Then, SE follows the procedures ❸ - ❼ to process these
requests. Once completed these procedures, the SE will process
them one by one and send ACKs to corresponding AEs. The over-
head of batch processing is negligible for two reasons. First, the
increasing size of sealed and stored data only slightly increases the
execution time, resulting in a slightly higher latency. However, this
can be circumvented by the following pipelining technique. Second,
network messages (i.e., prepare and decide message) remain the
same since the output size of the hash function is fixed no matter
the size of inputs.
3) Pipelining. Our third optimization is the pipelining technique,
as shown in Figure 5. In StaUp-Basic, there are mainly three stages
for an SE to process a state update request: one stage for seal&store
operation and two stages for message exchanges (illustrated in the
bold line in Figure 3). Both of them are on the critical path of state
updates. There are two observations behind our optimizations. First,
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the seal and store operation can be executed before the previous
update requests are completed. The pre-processing can reduce the
additional delay caused by the increasing size of sealing and storing
data when batching requests. Second, the second-round message ex-
changes can be piggybacked to the first-round message exchanges.

We modify procedures ❸ - ❼ in StaUp-Opt. In particular, these
five procedures are replaced by three new procedures.
❸ The SE sends a message ⟨SD𝑗 , ( 𝑗, 𝑠𝑒𝑞), SD𝑑𝑒𝑐𝑖𝑑𝑒 ⟩ to other SEs in
the group. If SD𝑗−1 is decided, then SD𝑑𝑒𝑐𝑖𝑑𝑒 is set null. Otherwise,
SD𝑑𝑒𝑐𝑖𝑑𝑒 is SD𝑗−1.
❹ When receiving the state update proposal, an SE first stores
the message. Then, if SD𝑑𝑒𝑐𝑖𝑑𝑒 is not null and the value has been
echoed, it updates the state digest for the SE and returns an Echo
message that contains both SD𝑗 and SD𝑑𝑒𝑐𝑖𝑑𝑒 . Otherwise, it returns
an Echo message that contains SD𝑗 .
❺ If SD𝑑𝑒𝑐𝑖𝑑𝑒 is not null, and the target SE receives more than 𝑓 + 1
Echo messages that contains both SD𝑗 and SD𝑑𝑒𝑐𝑖𝑑𝑒 , it updates the
state digest SD𝑑𝑒𝑐𝑖𝑑𝑒 for the associated AE and then return the ACK
response. If SD𝑑𝑒𝑐𝑖𝑑𝑒 is null, and the target SE receives more than
𝑓 +1 Echo messages that contains SD𝑗 , it will execute the procedure
❸, in which it sends a message ⟨SD𝑗+1, ( 𝑗 + 1, 𝑠𝑒𝑞), SD𝑗 ⟩ to other
SEs in the group.

The pipelining structure enables Narrator to have a simple
design (i.e., unified message types) and higher efficiency (i.e., one-
roundmessage exchange for requests on average). However, there is
one limitation of using the pipelining structure. This is, when the tar-
get SE has no queued requests, the served requests are pending for
new requests to complete the second round, resulting in a waiting
latency. To address this issue, SEs can create a null request, which
does not update any AEs’ states, to complete the pending requests.

4.6 State Read

When an AE wants to check the freshness of its state or the sealed
data from OS, it calls the function readState() to obtain the latest
state digests from the target SE. When receiving the state read
request, the target SE cannot directly return the recorded state
digest of the AE. This is because there may be multiple local SE
instances (i.e., a forking attack), and the requested SE may not have
the freshest one. Therefore, it has to check whether its state is the
freshest. If yes, it can securely return the AE’s state digest. The
state read protocol contains four steps.
❶ An AE calls the readState() function to send the target SE a state
read request.
❷ When receiving the request, the target SE sends a request to all
SEs in the group to retrieve its latest state.
❸ Each SE checks its SE state table and sends back the stored state
digest of the target SE.
❹ After receiving at least 𝑓 + 1 replies, the target SE first picks the
state digest with the maximum index and sequence number. Then,
the SE compares the state digest with the one generated by its state.
If its state is the latest, it sends back the recorded state digest of the
AE. Otherwise, it requires the sealed data from OS to resume its
latest state.

readState()

response()

①

④

AE
SE1 

(local)
SE3

SE2 

fetchState()

③Received f+1 

Echos
response()

②

Figure 6: The overview of the state read protocol.

Due to rollback and forking attacks, an AE needs to check the
freshness of its state when updating state (§4.7). However, this leads
to extensive state read operations given a frequent state update.
To address the high query overhead, we use a post verification,
in which SEs check the freshness of AEs’ requests. Given a state
update, the AE sends the target SE both the current state digest and
an updated state digest. If the AE’s current state digest does not
match the recorded one, the target SE returns an Error message,
and then AE can read its latest state. Otherwise, the target SE also
adds its current state digests into the state update request. When
receiving the requests, other SEs do a similar check. If the target
SE’s current state digest is stale, they return an Error message, and
then the target SE also sends the AE an Error message. Otherwise,
the target SE will eventually return an ACK message for successful
state updates.

4.7 Restart Protocol

We present the procedures that SEs and AEs run to recover their
states after reboots.
1) SE Restart. The goal is to allow rebooting SEs to join the ex-
isting group, resume their states, and store other SEs’ lasted state
digests in memory. Our restart protocol adopts a similar session
key update mechanism as the one in [40]. Specifically, an SE has to
establish new session keys with other SEs since it has lost all pre-
vious ones. The session key works as an identity for an SE, which
ensures only an SE on the same platform is working. However, we
find that the restart protocol of ROTE [40] has a security issue, in
which an adversary can utilize the protocol to create two parallel
running systems and then launch rollback and forking attacks on
TEE applications. Due to space constraints, we provide a detailed
description and associated countermeasures in Appendix A [43].
The fixed restart protocol of SEs contains four steps.
❶ An SE first establishes new session keys with other SEs since it
has lost all previous ones. Before session key establishment, other
SEs have to check whether they are still in the group, i.e., their
session keys are still active. In particular, each SE pings other SEs,
and they establish the new session key with the newly joined SE
only if they receive the response from at least 𝑓 SEs.
❷ The SE executes the steps ❷-❹ in the state read protocol (§4.6) to
obtain its and other SEs’ latest state digests. These can be combined
in one read request.
❸ The SE picks the latest state digests with the maximum index
and sequence number for each SE (including itself). For other SEs’
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state digest, it updates the SE state table with the picked value. For
its state digest, it increases 𝑠𝑒𝑞 and re-executes the steps ❷-❻ in the
state update protocol (§4.4) to update its latest state digest. These
steps can guarantee the latest state digest is securely recorded in at
least 𝑓 + 1 SEs.
❹ The SE obtains the sealed state data from OS, and then compares
it with the state digest from other SEs. If they match, the SE recovers
its states and then becomes non-faulty. Only non-faulty SEs can
process AEs’ and other SEs’ requests.

In step ❸, there may exist more than one state digests of an
SE with the maximum index and sequence number. This case is
triggered when the SE crashes and recovers several times without
advancing to any new states. To ensure safety, under the above case,
the SE stops recovering its state, which may affect the liveness prop-
erty. However, this case rarely happens in a non-adversarial setting,
and can be partially avoided by requiring a reboot to advance the
SE’s states.
2) AE Restart. After reboot, an AE has to recover its latest state.
There are three steps: 1) the AE executes state read protocol to
request the latest state digest from the target SE; 2) the AE obtains
the latest sealed state from OS and then checks the freshness of
unsealed state data, and 3) If these two match, the AE will update
its state to the latest one and publish associated outputs.

5 SECURITY ANALYSIS

5.1 Liveness Analysis

The liveness property states that an AE can resume its state after
unexpected failures like the power shutdown. Since the AE relies on
Narrator for secure state recovery, we first have an observation
of Narrator’s 𝑓 -liveness property.

Observation 1 (𝑓 -liveness). An AE cannot read or write its state
digest anymore when more than 𝑓 SEs are faulty at the same time.

The reason for the above observation is that given a state update
or read request from an AE, the target SE has to obtain reply mes-
sages (e.g., Echo or ACK messages in state read protocol in §4.4)
from at least 𝑓 +1 non-faulty SEs (including itself). Thus, more than
𝑓 faulty SEs would make the AE’s requests failed. Besides, a faulty
SE has to complete the restart protocol (which involves the state
read from at least 𝑓 +1 non-faulty SEs) to enter the non-faulty status.
Similarly, if more than 𝑓 SEs are faulty, the SE cannot complete the
restart protocol and become non-faulty.

The Narrator’s 𝑓 -liveness property provides a detectable se-
curity. This is, if an adversary violates this property by crashing
more than 𝑓 SEs and making the system down, it can violate the
liveness property. However, the attack is easy to be detected by
clients, and it also does not violate the safety property (since no
AEs can update states or resume states after reboots). Therefore,
we do not consider this an attack. Instead, cloud providers should
choose suitable parameters for 𝑓 such that the system can toler-
ate enough unexpected failures. With this property, we have the
following theorem for AEs’ liveness property.

Theorem 5.1 (Liveness). With the 𝑓 -liveness guarantee of Nar-

rator, any AE can resume its state from unexpected failures in a

non-adversarial setting.

The proof is straightforward. For each state update, an AE has
stored a sealed state snapshot on the disk and also the associated
state digest in the Narrator system, which enables it to recover
states from unexpected failures. Due to space constraints, we leave
the detailed proofs in Appendix B.1 [43].

5.2 Safety Analysis

WithoutNarrator’s 𝑓 -liveness guarantee, AEs cannot update their
states, in which rollback and forking attacks are impossible. There-
fore, our safety analysis focuses on the existence of Narrator’s
𝑓 -liveness property.
Proof sketch. The proof has five main parts. First, we have the
Observation 2, which says that the initialization process and restart
protocol ensures that there is only one group of Narrator sys-
tem for AEs. Second, we have Lemma 5.2, which says that SEs
on the same platform can prevent the rollback attack. Third, with
Lemma 5.2, we can easily prove that AEs of the same program
are resilient to the rollback attack in Lemma 5.3 and forking at-
tack in Lemma 5.4. Finally, we have the safety property of AEs in
Theorem 5.5. We first introduce the observation of Narrator’s
uniqueness property.

Observation 2 (Uniqeness). AEs of the same program 𝑃 can

link to only one Narrator system for state continuity services.

The uniqueness of Narrator system is guaranteed by two pro-
cedures: the initialization process and the restart protocol. First,
the initialization process ensures that only one group of SEs is
configured and serves AEs’ requests. In particular, to complete the
initialization, an SE has to append the configuration data with its
unique identifier on the blockchain (step ❹ in §4.3). Later, when
another SE is initialized and queries the same unique identifier from
the external blockchain (step ❸ in §4.3), it will find the associated
configuration data and know the previously initialized SE on the
same platform. As a result, it will abort the initialization.

Second, the restart protocol guarantees that at most one SE on
a platform is running, i.e., communicating with other SEs. After
rebooting, an SE has to refresh its session key with other SEs, and
meanwhile receives replies from the majority of active SEs. If an
SE completes the restart protocol and joins the Narrator system,
other SEs on the same platform will have outdated session keys and
cannot communicate with other SEs anymore. Therefore, AEs of
the same program cannot link with multiple active SEs on the same
platform. Next, we prove that SEs can prevent rollback attacks.

Lemma 5.2 (Rollback Prevention of SE). Suppose an SE ad-

vances to state 𝑠 𝑗 at time 𝑡 , no SEs on the same platform will resume

states 𝑠 𝑗 ( 𝑗 < 𝑖) after time 𝑡 .

This lemma says that an adversary cannot roll SEs’ states back
to a stale version. Due to space constraints, we leave the detailed
proofs in Appendix B.2 [43]. Next, we can prove the rollback and
forking prevention properties of AEs.

Lemma 5.3 (Rollback Prevention of AE). Suppose an AE of the
program 𝑃 advances to state 𝑠𝑖 at time 𝑡 , no AEs of the same program

will resume states 𝑠 𝑗 ( 𝑗 < 𝑖) after time 𝑡 .

Proof. Given a successful state update 𝑠𝑖 of the AE, there is an
associated state update on the target SE, in which the associated
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state digest 𝑆𝐷𝑖 of the AE is recorded, Lemma 5.3 further ensures
that once the state update of the SE is done, the SE will never roll its
state back. Therefore, the AE of the same program cannot retrieve
any state digest 𝑆𝐷 𝑗 ( 𝑗 ≤ 𝑖) from the target SE and also cannot
resume states 𝑠 𝑗 ( 𝑗 ≤ 𝑖). □

Lemma 5.4 (Forking Prevention of AE.). Suppose two AEs of
the same program 𝑃 start from the same state 𝑠𝑖−1 and then and

advance to states 𝑠𝑖 and 𝑠
′
𝑖
, respectively, then 𝑠𝑖 = 𝑠

′
𝑖
.

Proof. The uniqueness property guarantees that AEs of the
same program can only link to only oneNarrator system.Without
loss of generality, we assume that an AE of the program 𝑃 first
advances from state 𝑠𝑖−1 to state 𝑠𝑖 at the time 𝑡 through an active
SE on the same platform. By Lemma 5.2, another AE of the same
program with state 𝑠𝑖−1 cannot proceed to state 𝑠′

𝑖
because 𝑠𝑖−1 is

not the latest one, and SEs refuse to serve this state update. If the
AE is rebooted, it will resume state 𝑠 𝑗 ( 𝑗 ≥ 𝑖) and cannot enter state
𝑠′
𝑖
≠ 𝑠𝑖 , too. □

Theorem 5.5 (Safety). A stateful enclave program 𝑃 should never

enter into a stale state or inconsistent state.

Proof. With Lemma 5.3 and Lemma 5.4, we have the safety
property of enclave program 𝑃 . □

6 PERFORMANCE EVALUATION

In this section, we evaluateNarrator to determine how it performs
as compared to existing solutions. We consider two performance
metrics: state write/read latency (§6.2) and throughput (§6.3). We
compare Narrator with several designs: no-rollback protection,
TPM monotonic counter, and ROTE [40]. We show that Narrator
can provide both fast state write/read and high throughput, which
could meet the performance requirements for cloud applications.
Implementation. We implemented Narrator on the Open En-
clave SDK2. We used OpenSSL library for secure communication
and cryptographic operations, such as the generation of random
keys, encryption, and decryption. We use asymmetric cryptogra-
phy for signing (ECDSA) and encryption (256-bit ECC). Besides, we
use 128-bit AES-GCM in encrypt-then-MAC mode for symmetric
message encryption and authentication. We implemented the SE in
about 1500 LoC, Narrator library in about 2800 LoC, and a simple
AE in about 800 LoC3. Since the interaction with the blockchain
is out of the critical path of the state update and read, we do not
implement it and evaluate the associated performance (e.g., delay).
We leave the evaluation as one of the future work. We use the
ECDSA-based Intel DCAP attestation service for remote attestation
of the SEs [5].
Experimental settings.We deployed Narrator in four Dell XPS-
8940 desktops equipped with 32 GB RAM, an 8-core CPU (Intel
I7-10700 @ 2.90GHz), and 512 GB SSD. We run Ubuntu 20.04 with
Linux kernel 5.8.0 on these desktops. The four machines are con-
nected with a 1Gbps wired local area network. We use NetEm [30]
to simulate a LAN environment with 1.07 ± 0.03ms inter-SE RTT

2https://github.com/openenclave/openenclave
3The code can be found at https://github.com/pw0rld/Narrator.
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Figure 7: The state write/read response time with different

number of SEs and AEs’ state size (i.e., 10KB and 100KB) in
both LAN and WAN environments.

and a WAN environment with 20 ± 0.1ms inter-SE RTT. In particu-
lar, we run SEs on three different machines for the experiment of
three SEs, while running more than one SEs on a machine if the
number of SEs is larger than four.

6.1 Baselines

We consider three designs for comparison:
• No-rollback protection. For each state update, an enclave seals
and stores a state snapshot on the disk. After reboot, the enclave
fetches the latest sealed data from OS for state recovery. This
design is used to illustrate the overhead introduced by rollback
prevention methods.
• TPMmonotonic counter. Given a state update, an enclave first
increments its counter and then seals and stores a state snapshot
with the counter value on the disk. To check state freshness, the
enclave first reads the counter value and then compares the value
with the one in the sealed data obtained from OS. This inc-then-
store method does not provide liveness (§2.3).
• ROTE. The ROTE system also uses the above inc-then-store
method, but provides a virtual monotonic counter by a distributed
system [40].

6.2 State Write/Read Response Time

We evaluated the response time of state write or read operations.
The response time is the total elapsed time from when a request is
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made by an AE to the time an associated ACK is received by the
AE. The batch size in StaUp-Opt is set to 50. (In §6.3, the impact
of varied batch size on the throughput of StaUp-Opt is studied.)
In particular, we do not consider the waiting time of service in
the following measurements, which help us to know the optimal
response time. Two environments, LAN and WAN, are considered.
LAN environment. Figure 7a shows the response time of state
write with different numbers of SEs. We consider two settings of
AE’s state size: 10KB and 100KB. First, with the increase of SEs, the
response time also increases. This is as expected, since the target
SE needs to communicate with more SEs to collect their replies.
Given AEs’ state size 10KB, the response time is 3.87ms and 5.88ms
in groups of 3 and 11 SEs, respectively. In the same setting, the
response time in StaUP-Opt is larger than that in StaUP-Basic
because of the additional processing time for other requests in the
batch. Figure 7b shows the response time of state read with different
numbers of SEs. Similarly, the increasing number of SEs also leads
to a larger response time. When AEs’ state size is 10KB, the delay
is 1.29ms and 5.36ms in groups of 3 and 11 SEs, respectively.
WAN environment. Figure 7c and Figure 7d shows the response
time of state write and state read in a WAN environment, respec-
tively. Similar to that in LAN, the increase of SEs leads to a larger
response time. In addition, results show that the message delay be-
tween SEs is a dominant factor in response time in a WAN network.
Therefore, cloud providers should choose SEs located in the same
data center to provide performant state continuity service.

6.3 Throughput

Figure 8 shows the throughput of StaUp-Opt protocol with differ-
ent batch size in a LAN environment. The throughput is measured
by the number of AEs’ state update requests completed by SEs in
one second. We do not evaluate StaUp-Opt because it proceeds
requests in series, and its throughput can be easily derived by the
associated response time in §6.2. The results show that the increase
in batch size will significantly increase the throughput. For example,
given a group of 5 SEs, the throughput is 1730 when the batch size
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Figure 9: The state write/read latency of different solutions

with the varied AEs’ state size.

is 10, whereas the throughput is 5880 when the batch size is 60.
Besides, increasing batch size does not bring additional message
overhead (§4.5). This implies that we can further increase the batch
size for a larger throughput. Note that increasing batch size will
slightly increase the response times, as shown in §6.2.

6.4 Performance Comparison

Latency. Figure 9a illustrates the response times of state write
for different solutions. We consider a group of five nodes for both
ROTE and Narrator. The results show that sealing and storing
state snapshots without rollback protection can be done quickly
within hundreds of microseconds. Given a state size 10KB, it takes
about 429`s. The results also show that StaUp-Basic protocol in
Narrator has a similar response time with ROTE due to the similar
two-round write process. StaUp-Opt protocol has a slightly higher
response time than them due to batch processing. Compared with
Narrator and ROTE, the TPM counter-based solution has a much
higher response time. Figure 9a shows the response times of state
read for different solutions. We can obtain similar conclusions as
that for state update.
Throughput. Both ROTE and TPM counter have to serially incre-
ment the counter value. Therefore, with the response time of their
state update operations, we can compute their throughput. When
the group size is 5 and state size is 10KB, the response times of
ROTE and TPM counter-based solution are 4.32ms and 12.24ms, re-
spectively. Thus, their throughput is 231 tx/s and 81 tx/s. Because of
the similar response times, StaUp-Basic protocol has a throughput
of 231 tx/s, whereas StaUp-Opt protocol has a throughput of 5880
tx/s when the batch size is 60 (§6.3). As we can see, the throughput
of StaUp-Opt is 30× larger than ROTE and 70× larger than the
TPM counter.

7 COMPARISON TO CONSISTENT

BROADCAST PROTOCOLS AND ROTE

We discuss the comparison between consistent broadcast proto-
cols [19, 49], ROTE [40], and Narrator. Narrator and ROTE are
built based on consistent broadcast protocols, but adopt a two-round
message change protocol (rather than one-round in the consistent
broadcast protocols). The root cause is that Narrator and ROTE
have to consider the recovery of participants, and the possible
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rollback attacks through the recovery mechanism. Besides, due to
the integrity property of TEEs, a participant cannot lie about the
sending messages, and so Narrator and ROTE can tolerate the
majority (rather than one-third in [19, 49]) of faulty participants.

Narrator differs from ROTE [40] in four aspects. First, ROTE
leverages the inc-then-store method with the monotonic counter ab-
straction, whereas Narrator uses the store-then-execute method
with the state digest abstraction (§2.3.1). As a result, to guarantee
safety, ROTE does not have liveness, i.e., a crashed AE may not
recover its state, whereas Narrator can achieve both safety and
liveness properties. Besides, the above difference also leads to dif-
ferent sub-protocols, such as the state update and restart protocols.
For example, in Narrator, an SE has to re-execute the latest state
update after reboots to prevent rollback attacks. Second, ROTE
relies on a centralized trust (i.e., a trusted administrator to initialize
the system), whereas Narrator is based on the decentralized trust
(i.e., using blockchains). Third, Narrator adopts a restart protocol
with a fixed security issue in ROTE. We also note that Narra-
tor adopts several techniques including the periodical checkpoint,
batch processing, and pipelining structure to improve the state up-
date performance. However, since batch processing and periodical
checkpoint are general optimization methods, they can be directly
applied to ROTE. Besides, the pipelining structure is closely related
with the specific protocol, so it needs a tailored design to pipeline
the two-round message change protocol in ROTE.

Due to space constraints, we also discuss the reconfiguration
and hardware TCB update in Appendix C.1 and migration in Ap-
pendix C.3 [43].

8 RELATEDWORK

8.1 Rollback Prevention

Non-volatile storage. There are many solutions based on the
non-volatile storage, such as SGX counter [7] and TPM’s counter
and NVRAM [39, 48, 52, 53]. In [48], Parno et al. proposes Mem-
oir, which is based on TPM NVRAM. Besides, an optimized variant
calledMemoir-Opt leverages the Uninterrupted Power Supply (UPS)
and PCRs to address the limited write cycles of NVRAM. Similarly,
Strackx et al. in [52] proposes ICE, in which contents of on-chip
dedicated registers are written to persistent memory with the help
of a capacitor at system shutdown. However, the additional hard-
ware accessories are still under the control of the cloud provider
and also leads to additional cost. Besides, these solutions have a
long response time for state updates or reads. Unlike hardware
modifications in Memoir and ICE, Ariadne [53] uses balanced Gray
codes to realize a single bit flip when incrementing a counter, which
can minimize the TPM NVRAM wear. However, Ariadne also has
limited performance for using NVRAM. All these solutions rely on
additional TPM PCR to detect forking instances.

Matetic et al. in [40] proposes ROTE, which realizes a distributed
system to serve as the virtual counter for enclaves. Compared with
the hardware counter, ROTE can process hundreds of state updates
per second and has no limited write cycles. However, the ROTE sys-
tem relies on a trusted party to initialize the system. Besides, ROTE
cannot guarantee liveness for using the inc-then-store method.
ADAM-CS [39] is a hybrid system that realizes a virtual monotonic
counter based on a set of distributed TPM counters. ADAM-CS can

support thousands of increments per second. However, ADAM-CS
suffers from the vulnerability window, during which an adversary
can revert states (§2.3).
Trusted third-party. Karapanos et al. in [34] proposes Verena, a
web application platform in which a trusted server can provide
integrity queries of a web page. In [55], a server with a trusted
timestamping device is designed to provide trusted storage for
clients. However, these solutions simply move the trust of a local OS
to a remote server, which may also suffer from the attack. Besides,
the trusted server becomes the attacked target and is also vulnerable
to a single point of failure.
Blockchain and consensus protocols. Kaptchuk et al. in [33]
leverages blockchain such as Bitcoin [41] and Ethereum [56] to
maintain states for TEEs. By recording states in an append-only
blockchain, enclaves perform secure computation without roll-
back attacks. However, as analyzed in §2.3, the performance of
this method is poor because of the frequent interactions with
performance-limited blockchains. Blockchains rely on Byzantine
consensus to make all parties have the same transaction sequence,
which usually has high latency for several rounds of communi-
cation, incurs high message complexity and requires less than
one third of faulty nodes. What is more, each interaction with
blockchains has to pay some fees for the provided service. making
frequent state updates expensive.

Many studies [11, 27, 38] show that combining TEEs with Crash
Fault Tolerant (CFT) consensus (e.g. Paxos [35] and Raft [46]) can
securely work in the presence of the minority of Byzantine nodes.
For example, Signal integrates Raft into SGX for securely storing
clients’ value [8]. However, CFT protocols like Raft are more com-
plex than the adopted consistent broadcast protocol in Narrator.
The additional complexity comes from the leader election and faulty
leader detection, which unnecessarily increases the TCB size. More-
over, in Narrator, SEs can update their states in parallel, whereas
Raft assigns a single node, called the leader, to handle all updates.
The parallel processing makes Narrator more efficient. Therefore,
Narrator is built on a customized consistent broadcast protocol,
rather than CFT protocols.

8.2 Forking Prevention

TEE applications can use a hardware-based solution like Config-
uration Registers (PCRs) provided by TPM to detect the forking
attack [53]. For example, an enclave application sets PCR when
booting, which enables another enclave instance of the same appli-
cation program to detect the change of PCR value. Software-based
systems [16, 33, 40] usually integrate the forking defense with the
rollback defense together.

9 CONCLUSION

In this paper, we present Narrator, a system using the decen-
tralized trust to provide performant state continuity protection
for cloud TEEs. Narrator relies on a blockchain to initialize a
distributed system of cloud TEEs, which adopts a customized con-
sistent broadcast protocol to provide fast and unlimited state update
and read. Our evaluation suggests that Narrator provides a prac-
tical solution for preserving state continuity of TEEs in the cloud.
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