
Unveiling Collusion-Based Ad Attribution Laundering Fraud:
Detection, Analysis, and Security Implications

Tong Zhu
tongzhu@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Chaofan Shou
shou@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Zhen Huang
xmhuangzhen@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Guoxing Chen∗
guoxingchen@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Xiaokuan Zhang
xiaokuan@gmu.edu

George Mason University
Fairfax, Virginia, USA

Yan Meng
yan_meng@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Shuang Hao
shao@utdallas.edu

University of Texas at Dallas
Richardson, Texas, USA

Haojin Zhu∗
zhu-hj@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

ABSTRACT

In recent years, the growth of mobile advertising has been driven by
in-app programmatic advertising and technologies like Real-Time
Bidding (RTB). However, this growth has also led to an increase in
ad fraud, such as click injection, background ad activity, etc. While
existing studies have primarily concentrated on ad fraud within
individual apps or devices, this paper introduces a new form of
collusion-based ad fraud, named ad attribution laundering fraud
(ALF). ALF involves multiple apps collaborating to deceive adver-
tisers by misrepresenting the app where ads are displayed. The
collusion-based approach allows lower-quality apps to exploit the
reputable identities of seemingly legitimate apps. This deceives ad-
vertisers or ad networks into believing that the advertisements they
place are reaching potentially valid end-users on the legitimate app.
The seemingly legitimate ad events and ad attribution procedures
employed by individual apps in such attacks can evade detection
by existing tools.

To detect ALF , we design and implement the first detection
framework, AlfScan. It overcomes two challenges to extract apps’
identities from diverse and obfuscated apps using both static and
dynamic analysis techniques, then cross-check the identities to
identify ALF . We evaluate AlfScan on a 200-app ground truth
dataset, and it achieves 92% precision and 92% recall. We use AlfS-
can to conduct a large-scale analysis on 91, 006 apps and identify
4, 515 unique fraudulent apps and 1, 483 fraudulent clusters, expos-
ing patterns among fraudulent developers and revealing reliability

∗Guoxing Chen and Haojin Zhu are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670314

issues in third-party app development frameworks. We also find
that through ALF , fraudulent apps can generate invalid ad traffic
that is 2.43 times to 33.33 greater than the ad traffic they would
normally generate. After reporting our findings to 15 ad network
companies, 4 companies expressed interest in testing AlfScan. In
particular, we have submitted 344 apps to the Unity ad team, and
they have confirmed that the apps were involved in fraudulent
activities.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Ad Network; Mobile Ad Fraud; Ad Attribution Laundering Fraud;
Static Analysis; Dynamic Analysis

ACM Reference Format:

Tong Zhu, Chaofan Shou, ZhenHuang, Guoxing Chen, Xiaokuan Zhang, Yan
Meng, Shuang Hao, and Haojin Zhu. 2024. Unveiling Collusion-Based Ad At-
tribution Laundering Fraud: Detection, Analysis, and Security Implications.
In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Com-

munications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3670314

1 INTRODUCTION

In recent decades, in-app programmatic advertising has been the
driving force behind the growth of mobile advertising, and the ad
market is estimated to increase by USD 188.92 billion from 2021 to
2026 [50]. This is due to innovative ad technologies such as Real-
Time Bidding (RTB), which have enabled the automatic buying and
selling of ad inventory (the available advertising space in apps). A
typical workflow of RTB is as follows: Firstly, each ad event (e.g., ad
impressions, ad clicks, app installations, etc.) in the ad inventory ini-
tiates the generation of ad traffic, which is subsequently dispatched
to the advertising network; Secondly, the network tracks and ana-
lyzes this ad traffic to determine the source app that attributes to
specific ad events. Finally, the network conducts settlements with

https://doi.org/10.1145/3658644.3670314
https://doi.org/10.1145/3658644.3670314

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

app developers based on factors such as impression frequency or
the number of impressions/clicks.

Propelled by financial motives, attackers engage in mobile ad
fraud to steal advertising revenue. Both academia and industry have
identified a series of mobile ad frauds. They fall into the following
two dimensions: fake ad event and false ad attribution. (1) The fake
ad events include fake clicks [13, 68, 14, 41, 48], fake installation [69,
62, 20], invalid impressions [30, 34, 18, 37, 17, 66, 64, 2, 48], or prob-
lematic ad content [66, 64, 2, 55, 63], where fraudulent apps create
deceptive or counterfeit interactions between ads and users. (2) The
false attribution of ads includes installation hijacking [8], and app
misrepresentation fraud [25], where fraudulent apps manipulate
the attribution data to falsely claim credit for legitimate ad events
on other apps. However, existing detection schemes consider fraud-
ulent activities within each app separately and resort to rule-based
mechanisms [30], whitelists [25], and models trained by legitimate
apps [68, 37], to determine whether each app is malicious or not,
individually. In this paper, we ask the following research question:
Can a cluster of seemingly legitimate apps collude with each other to

evade existing detection methods and engage in ad fraud?

A novel collusion-based mobile ad fraud. We identified a collu-
sion-based mobile ad fraud, named ad attribution laundering fraud
(ALF). ALF involves genuine ad events and user interactions in each
app, which makes it difficult to detect. ALF attributes the adver-
tising traffic of a cluster of apps to a single app through collusion.
Lower-quality apps can exploit the reputable identities of legitimate
apps based on collusion to boost ad revenue. This results in the sale
of low-valued or entirely illegitimate inventory across various apps
to advertisers or networks, falsely conveying that the inventory
is reaching potentially valid end-users on the legitimate app. In
ALF , ad events and ad attribution processes on individual apps
appear legitimate, distinguishing it from traditional ad fraud tactics
involving fake ad events (e.g., fake clicks) or manipulation of ad
attribution processes (e.g., installation hijacking). Consequently, tra-
ditional ad fraud detection tools such as ClickScanner[68] encounter
challenges in identifying ALF , necessitating detection across mul-
tiple apps to identify shared identities among different apps. ALF
undermines the integrity and transparency of the ad attribution
ecosystem, violating industry authoritative guidelines outlined by
the Media Rating Council (MRC) [40], Interactive Advertising Bu-
reau (IAB) [28], and Google [23]. Our research is the first to unveil
the collusion-based ad fraud in the mobile advertising ecosystem.

In this study, we take the first step toward detecting ALF by
diving into the fundamental RTB attribution mechanism. Our key
observation is that collaborative attackers leave identifiable traces
that violate the rule of one-to-one association between apps and
AppIDs. In detail, ad networks rely on the unique identifier[24],
known as AppID, to precisely identify the specific app that is display-
ing an advertisement. This identification is critical for assessing the
effectiveness of advertisements, attributing ads, and determining
the distribution of ad revenue. Developers are required to maintain
a one-to-one correlation between apps and AppIDs during ad inte-
gration, as emphasized by prominent networks like Google Admob,
etc.[24, 43], which ensures that ads delivered through the RTB pro-
cess are accurately linked to the respective apps. In ALF , when a
high-profile APP𝐴 colludes with a low-quality or illegitimate APP𝐵

(e.g., porn apps, malware, etc.), APP𝐵 violates the one-to-one asso-
ciation rule by collaboratively selling ad inventory under the same

AppID as APP𝐴 . The collusion enables APP𝐵 to monetize its subpar
traffic under the guise of APP𝐴 and enables the developers of both
APP𝐴 and APP𝐵 to share the ad revenue. When considering the ad
events and ad attribution process individually, these apps appear
harmless, rendering existing ad fraud detection tools ineffective.

To detect the ALF , the key problem we need to tackle is to detect
whether an AppID violates the aforementioned one-to-one associa-
tion rule and is used across different apps.We observe that appsmay
have hard-coded AppIDs in their source code, or dynamically-loaded
AppIDs from remote servers during runtime. To systematically ex-
tract these two types of AppIDs, we must address the following
challenges.
• Analyzing apps with diverse, evolving, and obfuscated ad

SDKs in a general and robust way. Extracting hard-coded
AppIDs via static analysis involves tracing data dependencies
from potential locations in code, such as tracking developer
APIs provided by ad software development kits (SDKs), which
allow developers to incorporate AppIDs into their code during
ad integration. However, relying solely on identifying developer
APIs is not foolproof. First, diverse and evolving ad SDKs often
introduce new and different APIs for AppID retrieval, compli-
cating the API tracking process. Second, in some fraudulent
apps, the fraudulent activities stem from compromised ad SDKs
manipulated by fraudsters, wherein they inject their own Ap-
pIDs. When developers are misled to use such SDKs, any AppID
defined by developer APIs will be replaced with the fraudster’s
AppIDwithin the SDK. As a result, tracking the values entered in
developer APIs becomes futile. Moreover, such SDKs are often
obfuscated, making it challenging to establish a robust code
pattern to facilitate data flow analysis.
• Imitating user interaction sequences to reach deep states

inside targeted apps. Initiating the ad-serving process by trig-
gering ads is crucial, as dynamic loading of AppIDs frequently
takes place in this phase. Triggering the ads and extracting dy-
namically loaded AppIDs often require complex and specific user
interaction sequences such as scrolling a specific page and then
clicking on a specific button. Existing dynamic analysis tools [46,
59, 58] treat a user interaction as an independent random input
instead of a sequence of dependent inputs. As a result, they
either fail to trigger ads hidden in a deep state, or require a
significant amount of time for analysis.

AlfScan. To address these challenges, we propose AlfScan, the
first automatic framework for the detection of ALF behaviors in
apps. We unearth a fundamental step of ALF – HTTP/HTTPS data
transmission with ad networks. AlfScan traces the code responsi-
ble for transmission to intercept hard-coded AppID, which is robust
and agnostic to obfuscations and is applicable beyond the 15 SDKs
analyzed in this study. To hunt remote manipulation of AppID and
track them, we need to reach deep states to trigger ad operations
via dynamic analysis. To solve this, AlfScan uses call-graph-based
snapshotting to assist fuzzing, which significantly improves its
performance. Finally, AlfScan cross-checks app package names
and their associated AppIDs to identify instances where multiple

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

apps utilize the same AppID, indicating their collaborative efforts
to increase the ad traffic deceptively.

To evaluate AlfScan, we assembled a ground truth dataset con-
sisting of 100 benign and 100 malicious manually-labeled apps.
The malicious apps were also confirmed by a third-party ad verifi-
cation company. AlfScan achieves 92% precision and 92% recall
on our ground truth dataset, demonstrating its effectiveness. We
also conducted a large-scale analysis on 91, 006 apps. AlfScan
has uncovered a total of 4, 515 unique fraudulent apps (4.96% of
the analyzed apps). To further verify the accuracy of the results,
we randomly sampled a set of 50 apps from those 4, 515 apps for
manual inspection. We found that each app among these 50 apps
shared the same AppID with one or more collaborative apps from
the 4, 515 fraudulent apps, which validates our result. We also found
that through ALF , fraudulent apps can generate invalid ad traffic
that is 2.43 to 33.33 times greater than the ad traffic they would
normally generate. Our exploration further unveiled distinctive
patterns of fraudulent apps based on their certificates. Additionally,
we exposed reliability issues associated with third-party app devel-
opment frameworks and presented sophisticated fraud schemes in
a detailed case study.
Contributions.We make the following contributions:
• A new type of ad fraud.We discover a new type of ad fraud, ALF ,
in which seemingly innocuous apps can collude with each other
to conduct ad fraud. Each of them looks benign when checked
individually using existing tools, thus bypassing state-of-the-art
ad fraud defenses (Sec. 3).
• A new detection framework.We have implemented an automatic
tool, AlfScan, to detect ALF . AlfScan utilizes control-flow-
graph-based static analysis and snapshotting-based dynamic
analysis to effectively unearth the key information from apps to
perform detection (Sec. 4).AlfScan demonstrates high accuracy
and efficiency in our 200-app ground truth dataset (Sec. 5).
• Large-scale analysis.AlfScan identifies 4, 515 unique fraudulent
apps from 91, 006 apps. We observe that fraudulent apps have
the capacity to inflate ad traffic, and we also discern patterns
among fraudulent apps based on their certificates, as well as
potential reliability issues within third-party app development
frameworks (Sec. 6).
• Case studies.We investigate three sophisticated ALF schemes,
including remote configurations that enable dynamic modifi-
cation of AppID, disposable apps that shield high-profile apps
from market bans, fraudsters that abuse ad network interfaces
to circumvent SDK verification, etc (Sec. 7).

Responsible disclosure. We reported our findings to 15 ad net-
work companies. We have received positive feedback from four
teams (i.e., Unity, Vungle, Baidu, and Tencent); they have expressed
interest in AlfScan or would like to test it. Moreover, we submitted
flagged AppIDs, associated with 344 malicious apps, to the Unity
ad team, who confirmed their involvement in fraudulent activities.
We discuss more details in Sec. 8.2.
Data availability. Our dataset can be found in https://github.com
/Firework471/Ad-Attribution-Laundering-Apps-Dataset.

❶

❸

Advertisers

Advertiser

AAdvertiser

BAdvertiser

C
... ❷

DevelopersAd Network

App-ads.txt

❸

Fig. 1: Real-Time Bidding ecosystem: When a user uses a

developer’s app, the app employs the AppID provided by ad

networks to label its ad inventory and puts this ad inventory

for sale on the ad network in real time (Step ❶). Advertisers

then bid for this ad inventory. Advertisement of the winning

bid is notified to the advertisers (Step ❷), and ad networks

initiate settlement procedures between the advertisers and

the developers for the respective ad impression (Step❸) based

on the AppID. To mitigate fraud, advertisers use app-ads.txt of
developers as an optional whitelist to ensure the legitimacy

of specific inventory.

2 BACKGROUND ON REAL-TIME BIDDING

Real-time bidding (RTB) is a dynamic and automated auction-based
system used in programmatic advertising, where ad inventory is
bought and sold in real time[49]. Ad networks rely on the unique
identifier[24], known as AppID, to identify the specific app where
an ad is displayed. AppID is used for ad attribution, which eventu-
ally determines which app will receive the payment for displaying
the ad. When developers integrate ads into their apps through ad
SDKs, they include their app-specific AppIDs, which are provided
by individual ad networks, within their code. Strictly adhering to
the one-to-one association between apps and AppIDs during ad
integration, as emphasized by major ad networks like Google Ad-
mob, etc.[24, 43], maintains the integrity and transparency of the
advertising ecosystem, ensures accurate attribution of ads served
through the RTB process. Developers enlist their ad inventory with
their apps’ AppIDs applied from the ad networks in real-time, which
is aggregated by ad networks responsible for facilitating bidding
on individual ad inventory. Advertisers strategically bid on the
available inventory to target their ads effectively. This effort forms
a supply chain for ads, with each entity playing a crucial role.

In detail, as shown in Fig. 1, when a user uses a developer’s app,
the associated ad inventory undergoes auction at an ad network,
employing the AppID for unique identification (❶). Advertisers then
submit bids based on their knowledge of the developers’ apps for
the ad inventory. The auction winner is subsequently notified (❷),
and their ad impression is deployed to fill the ad inventory on the de-
veloper’s app. Finally, the ad revenue is paid to the winners through
ad networks based on the AppIDs to recognize their identities (❸).

To combat fraud, developers and advertisers employ an optional
whitelist to verify the authority of the ad inventory. Developers
create a publicly accessible whitelist (i.e., app-ads.txt [25], an industry
defense tool against ad fraud) on their websites, listing authorized
{AdNetwork, AppId} pairs that they are using. Advertisers refer to the
app-ads.txt of developers. They validate authorized sellers of specific

https://github.com/Firework471/Ad-Attribution-Laundering-Apps-Dataset
https://github.com/Firework471/Ad-Attribution-Laundering-Apps-Dataset

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

inventory and will only buy those ad inventory from authorized ad
networks with authorized AppIDs.

Individual fraudulent apps may utilize the following two ap-
proaches to conduct fraudulent activities. For individual fraudulent
apps that have no connections with high-profile apps, they can use
the same AppID as high-profile app’s in their ad traffic to disguise
them as high-profile apps. In this case, advertisers will attribute
this traffic directly to the high-profile app and settle the ad revenue
with the high-profile app. Therefore, this strategy lacks profitabil-
ity for fraudsters, providing little incentive for them to pursue this
approach. On the other hand, they may disguise themselves as high-
profile apps by, for instance, creating cloned apps [16] on other ad
networks where the high-profile app does not participate, thereby
obtaining another AppID to participate in ad bidding within those
ad networks. However, this AppID can be regarded as unauthorized
by app-ads.txt and this approach can be blocked in Step ❸.

3 OVERVIEW

As shown in Fig. 2, for the collaborative APP𝐵 , it deceives adver-
tisers by selling ad inventory under the same AppID within the
same ad network alongside the high-profile APP𝐴 . This AppID is
authorized by the developers of the APP𝐴 in its app-ads.txt. This
creates an illusion that the ad is being delivered to authentic users
on APP𝐴 , which is actually displayed on APP𝐵 . All the advertising
revenue is credited to the APP𝐴 , and it could subsequently share
the profit with the APP𝐵 .

3.1 Threat Model

In our threat model, advertisers and ad networks are honest and
legitimate, but apps can be fraudulent.
• Collaborative apps. We consider the scenario where apps
engage in collusion. A specific app successfully gets approval
from the ad network and acquires an AppID. Other collaborative
apps exploit this AppID to label their ad inventory in the mobile
ad ecosystem. These collaborative apps may come from the
same company or engage in collaboration, aiming to defraud
advertising revenue.
• Honest ad networks. During the ad bidding process, we as-
sume that ad networks trust the apps on standard app markets,
i.e., such apps will faithfully report AppIDs sent from them to
advertisers. Our assumption aligns with those made in prior
studies [31] in this field.
• Advertisers with the ability to acquire app-ads.txt. Advertis-
ers can obtain app-ads.txt published publicly on the website by
developers to verify whether a certain AppID is authorized.

Objectives of the adversary. As shown in Fig. 2, the adversary
(a fraudulent app) wants to make more profits via ALF , deceiving
the user or the advertisers by selling ad inventory under the same
AppID with other apps. There are mainly two objectives. 1) Mone-

tizing the illegitimate traffic. Adversaries monetize the illegitimate
ad traffic using the AppID associated with a high-profile app by
misattribution. The advertising traffic generated by the illegitimate
app (e.g., APP𝐵 in Fig. 2), which may be originally barred from
passing the approval of the app market and advertising network,
and unable to obtain a legal AppID for advertising activities, is now

Advertisers

Advertiser

AAdvertiser

BAdvertiser

C
...

DevelopersAd Network

App-ads.txt

App with

Legitimate

AppID

Collaborative

App

A B

Fig. 2: Illustration of ALF ’s workflow

erroneously attributed to the high-profile app APP𝐴 . Consequently,
the APP𝐵 ’s subpar traffic can be monetized through the APP𝐴’s
AppID. 2) Boosting the advertising value of relatively low-quality apps
and amplifying its traffic. Alternatively, distinct apps (e.g., APP𝐴
and APP𝐵 in Fig. 2, which could have acquired different AppIDs
respectively at lower ad prices), probably affiliated with the same
entity, collude to concentrate all of their relatively low-quality app’s
traffic under a single AppID. The AppID belongs to APP𝐴 and has
received unauthorized advertising traffic from APP𝐵 , creating a
false impression of the associated APP𝐴 as a very high-quality one
with an inflated user base. This misconception boosts the advertis-
ing value of APP𝐴 , leading advertisers to raise the ad price for its
AppID in the ad auction. Simultaneously, traffic from APP𝐵 , under
the guise of the APP𝐴 , siphons advertising revenue.

3.2 Challenges and Solutions

Our study aims to detect ALF across ad networks, focusing on
identifying shared AppIDs among multiple apps. Extracting these
AppIDs is challenging due to diverse formats and integration meth-
ods among obfuscated ad SDKs and the deep state of the apps. We
present two motivating examples to illustrate specific challenges
in systematic extraction.

3.2.1 Obfuscated and diverse ad SDKs. One running example in
Fig. 3 illustrates a legitimate app using Google Admob SDK to ac-
cess the developer’s hard-coded AppID, which is pre-defined in the
Manifest.xml file (i.e., Line 2~3 in Fig. 3(a)). While in a fraudulent
app, the sly fraudster manipulates the SDK code (i.e., Line 4 in
Fig. 3(b)), often obfuscated, to replace the developer’s pre-defined
AppID within the SDK, rendering the original developer pre-defined
AppID ineffective.
Challenge C1: Analyzing apps with diverse, evolving, and

obfuscated ad SDKs in a general and robust way.We first need
to identify where a hard-coded AppID is used and subsequently
backtrack its value. However, existing static analysis tools (e.g. [68,
52, 57]) fail to consistently and robustly identify these AppIDs due
to their exclusive reliance on matching ad SDK developer APIs that
receive AppIDs, which often proves inadequate.

Specifically, in this case, simply matching the signature of the
SDK developer API receiving developer-defined AppID (i.e., Mani-
fest.xml file in this case) in other apps and backtracing the AppID
value is impractical because this API’s effectiveness could be under-
mined due to the potential manipulation of SDK code by fraudsters
(i.e., Line 4 in Fig. 3(b)). Static analysis tools struggle to establish a
robust pattern for locating fraudster-specified AppIDs inside the SDK

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 private static String zzaf(Context arg2) {

2 v0 = Wrappers.packageManager(arg2).getApplicationInfo(arg2.getPackageName(),

128).metaData;

3 return v0.getString("com.google.android.gms.ads.APPLICATION_ID");
4 }

(a) In the normal Google Admob SDK, it obtains the AppID predefined by
the developer.

1 private static String zzaep(Context arg2) {

2 v0 = Wrappers.packageManager(arg2).getApplicationInfo(arg2.getPackageName(),

128).metaData;

3 v1 = v0.getString("com.google.android.gms.ads.APPLICATION_ID");
4 return "ca-app-pub-xx~xx";//Fraudsters manipulate SDK code which makes the ad SDK

developer APIs (i.e., Manifest.xml file in this case) receiving AppID ineffectively.

5 }

6 final void zzc(...) {
7 JSONObject v9_1 = new JSONObject();
8 v9_1.put("app_id", zzaep(arg2));
9 }

(b) Fraudsters manipulate the obfuscated Google Admob SDK’s code to re-
place the developer-specified AppID within the SDK.

Fig. 3: The code snippet which replaces the developer-

specified AppID within the SDK.

due to the randomization introduced by obfuscation techniques in
the SDK.

Moreover, as shown in some mainstream ad SDKs’ updating
logs[26, 29, 1, 6, 22, 39, 47], developer APIs used to receive AppIDs
vary across ad networks and may change with SDK version updates
(e.g., Mintegral, Ironsource). And with emerging ad formats, some
SDKs (e.g., Facebook, Huawei, AdColony, Inmobi, Applovin) might
introduce more APIs for AppID loading, potentially complicating
future identification and leading to false negatives.
Solution S1: Static analysis based on control-flow and data-

dependency graphs. To tackle C1 and extract hard-coded AppIDs
systematically, we propose a consistent method to locate where
different SDKs handle AppIDs. Our key insight is that, at the end
of the stack trace of the SDK developer APIs receiving AppIDs,
we notice that all ad SDKs consistently require creating a key-
value pair containing the AppID, which is essential for establish-
ing the HTTP/HTTPS data transmission protocol to the ad net-
work. This process involves system class-originating APIs (i.e.,
v9_1.put(“app_id”, zzaf(arg2)), Line 8 in Fig. 3(b)) which remain
stable even if the SDK code is obfuscated or the ad types and SDK
versions are changed. We primarily focus on these system class-
originating APIs with a specific control-flow and data-dependency
graph. Based on this, AlfScan can handle all versions of the ad
SDKs in our research, is robust and agnostic to obfuscations, and
is applicable beyond the 15 SDKs analyzed in this study.

3.2.2 Deep state of the apps. We start by giving a running example
in Fig. 4 to motivate and illustrate the second challenge addressed
by this work. This example is simplified from a real-world app that
can change its AppID in its ad traffic based on commands received
from a remote server. We omitted non-essential details for clarity.

We can only determine that the app uses multiple AppIDs by run-
ning the app dynamically since this code snippet enables the app to
dynamically load and switch AppIDs. To begin with, a SharedPref-
erences file is dynamically written after the app executes an online
config agent SDK (Line 2). The app then gets a boolean configura-
tion (Line 3), named changeAdId, and a remote AppID, referred to as
remoteAppid (Line 4), from the SharedPreferences file. Subsequently,

1 private void changeAdId(){

2 configFile = OnlineConfigAgent.getSharedpreferences("online_config", 0);

3 boolean changeAdId = configFile.getString("use_erge_stream_ad", false);

4 String remoteAppid = configFile.getString("appid","");

5 String finalAdId = changeAdId ? "c9e0f226" : remoteAppid;

6 loadBannerAd(finalAdId);

7 }

Fig. 4: The code snippet which dynamically loads the AppIDs.

the app determines which AppID to use: the remoteAppid or the local
AppID “c9e0f226” (Line 5). The resulting AppID is then passed to the
ad SDK for ad loading (Line 6). By employing this code snippet, the
app developer can drive ad traffic for various AppIDs and execute
ALF remotely.
Challenge C2: Imitating user interaction sequences to reach

deep states inside targeted apps. Automatically and systemically
extracting dynamically loaded AppIDs (i.e., remoteAppid) from this
app poses the challenges: existing directed fuzzing tools [59, 58, 46]
overlook the statefulness of apps. They overlook the complex user
interaction sequences required to trigger ads, which are the prereq-
uisites for extracting dynamically loaded AppIDs. In this example,
the ad is only triggered when the user performs a specific action
sequence like (1) opening the ringtone selection list, (2) selecting
a ringtone, and (3) setting it as the default ringtone. Existing tools,
primarily designed for detecting malware, focus only on exploring
system inputs, such as matching random numbers or timestamps,
while disregarding the precise sequences of user events. As a result,
in this example, we failed to trigger the ads by the existing directed
fuzzing tools [46, 59, 58] in two hours. To address this issue, it is cru-
cial to optimize directed fuzzing techniques not only for identifying
potential system inputs leading to the targets but also for discov-
ering the exact sequence of user events needed to reach the target.

Moreover, existing solutions struggle with determining the pro-
gram path for triggering ads in complex, optimized, and obfuscated
real-world apps, leading to inefficiency and crashes. In this example,
certain solutions [46] require instrumenting over 42,000 functions
throughout the entire app, which consumes 1.4min for instrumenta-
tion and 6.2min on average to handle one user event. This causes po-
tential crashes and significant time overhead. Conducting symbolic
execution [59, 58] from the loadBannerAd() function can also lead to
state explosions due to the lengthy call trace with intricate branch
conditions and dependencies on system class-originating APIs.
Solution S2: Snapshotting-based and call-graph-based directed

fuzzing. To solve C2 and automatically extract dynamically loaded
AppIDs, we propose a lightweight and stateful directed fuzzing tool
with minimal instrumentation. We use snapshotting and call graphs
to explore the concrete sequences of user interactions for triggering
the ads. In this case, we only need to instrument changeAdId and
its parents on the call graph, reducing more than 99.4% instrumen-
tation. We successfully trigger the ads based on the snapshotting
and call graphs in 5 minutes. More detailed evaluations are shown
in Sec. 5.2.

4 ALFSCAN

As shown in Fig. 5, AlfScan comprises three modules: the Static
Analysis Module, Dynamic Analysis Module, and Final Decision Mod-

ule. In this section, we elaborate on each module’s details and
present a prototype implementation of AlfScan.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

2. Dynamic

Analysis
1.Static Analysis

Ad SDKs Manual
Analysis

Ad Objects

Generate CG
and Hook

Fuzzing

Search Apps
with Same ID

The Contextual
Information of Ad
Objects in CFG

The DDG of

AppIDs

Dynamically-
loaded AppIDs

Hard-coded
AppIDs

BenignFraudulent

APKsCrawler
App

Market

Backward
Slicing

No other apps

with the same ID

Different apps with

the same ID

No
ID

No ID
Multiple IDs

One
ID

One ID

Multiple IDs

3.Final Decision

Fig. 5: The workflow of AlfScan.

4.1 Design

To detect ALF by revealing the app-AppID association efficiently,
we adopt a strategy that accounts for the presence of both hard-
coded and dynamic AppIDs within an app. Initially, we conduct
static analysis to identify any instances of multiple hard-coded
AppIDs. If multiple AppIDs are detected statically, the app is flagged
as fraudulent. Conversely, if no or only one hard-coded AppID is
identified statically, we proceed with the dynamic analysis to search
for the dynamically loaded AppIDs. AlfScan finally detects ALF
based on app-AppID association.

4.1.1 Static Analysis Module. The static analysis module of Alf-
Scan established a reliable mechanism for identifying consistent
patterns in AppID handling across ad SDKs and precisely pinpoint-
ing and extracting hard-coded AppID dependencies.
Extract consistent and robust pattern governing the han-

dling of AppIDs. Our investigation has unveiled a general practice
across ad SDKs, where all of them finally use the key-value pair
to encapsulate the AppID. This key-value pair serves the purpose
of establishing the HTTP/HTTPS protocol for the data transmis-
sion to the ad network. In the stack trace of the SDK developer
API receiving AppID, the AppID is initially obtained, and finally, the
key-value pair is always constructed using system class-originating
APIs like json.put(). It is crucial to note that while SDKs’ code may
be obfuscated, system class-originating APIs remain stable as ob-
fuscators typically cannot obfuscate methods outside of developers’
classes [44]. As a result, our static analysis methodology primarily
focuses on these consistent system class-originating APIs.
Locate ad-related system class-originating APIs precisely

based on control flow graph and extract hard-coded AppID
dependencies. The static analysis module then builds a control
flow graph (CFG) to learn the contextual information of the system
class-originating APIs above in each ad SDK in order to accurately
locate themwithin each identified app. Afterward,AlfScan records
the process within the identified app, beginning with the assign-
ment of AppIDs, monitoring their transmission to the SDK, and
concluding with their integration into the ad request via the system

class-originating APIs above, all achieved through the backward
slicing of the parameters (i.e., AppID) of the system class-originating
APIs above. This data is then transformed into a data dependency
graph (DDG) to trace the generation process of AppIDs and ascertain
their values.

4.1.2 Dynamic Analysis Module. The dynamic analysis module of
AlfScan established a mechanism, overcoming tool limitations and
minimizing the impact on app execution, to extract dynamically
loaded AppIDs.
Probe user interaction sequence and extract dynamically

loaded AppIDs with minimum instrumentation. If the static
analysis module does not detect any hard-coded AppID, or if only
one hard-coded AppID is identified, AlfScan utilizes the dynamic
analysis module to search for dynamically loaded AppIDs.

This module utilizes a call graph (CG) to investigate the specific
sequences of user interactions required to trigger ads. Hitting func-
tions closer to the ads loading function on the CG increases the
likelihood of triggering the ads, as these functions often serve as
preconditions for ad display. Then, the dynamic analysis module
hooks relevant methods for receiving and transferring AppIDs based
on the DDG generated by the static analysis module. Subsequently,
it snapshots the state when the fuzzing hangs at a dead end to restart
exploration on a state with a high likelihood of leading to ads in
the future without any heavy instrumentation. This can minimize
the impact on the app’s execution and overcome the limitations of
existing directed fuzzing tools that rely on heavy deep program
state exploration.

4.1.3 Final Decision Module. Distinguish benign and fraudu-

lent apps based on AppID usage. The final decision module of
AlfScan detects fraudulent apps by identifying whether the us-
age of AppIDs in our dataset violates the one-to-one association
between apps and AppIDs.

If an app’s AppID is undetectable by both the static and dynamic
modules, it indicates dead ad calling codes, resulting in a benign
classification. Multiple AppIDs in one app flag an app as fraudulent
since an AppID should serve as a unique identifier to pinpoint the
specific app where an advertisement is being displayed [24], while
a single AppID in one app prompts AlfScan to further check for
shared AppIDs among other apps in the dataset. If shared, all apps
are deemed fraudulent; otherwise, they are classified as benign.

4.2 Implementation

4.2.1 Static AnalysisModule. Startwith json.put() andmap.put()
system class-originating APIs. Before conducting a large-scale
detection, we conduct a manual analysis of ad SDKs from 15 differ-
ent ad networks, including Google, Adcolony, Vungle, Ironsource,
Unity, Facebook, Inmobi, Applovin, Amazon, Mintegral, Tencent,
Bytedance, Baidu, Huawei, and Oppo. This comprehensive analysis
includes both top-rated ad networks fromAppBrain [4] and popular
ad SDKs in the reports from two leading Chinese app stores and
app development platforms [5, 11].

Our observation reveals a general practice among these ad SDKs’
developer APIs used to handle AppIDs. At the end of the stack
trace of these APIs, they consistently transfer AppIDs to a JSON

or Map object and encapsulate them as key-value pairs (e.g., <

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

“app_id”, 𝐴𝑝𝑝𝐼𝐷_𝑣𝑎𝑙𝑢𝑒 >). This encapsulation process is facilitated
by system class-originating APIs (i.e., json.put() and map.put()).
Notably, methods originating from system classes won’t be changed
with the change or update of the ad SDKs and won’t be obfuscated.
Consequently, we designate json.put() and map.put() system class-
originating APIs as the starting points for static analysis, ensuring
AlfScan’s robustness.

We then compile a list of keys (e.g., “app_id”, “mbridge_appkey”,
etc.) used by the system class-originating APIs in the 15 SDKs men-
tioned above to insert AppIDs into JSON or Map objects, enabling
AlfScan to effectively pinpoint relevant code responsible for AppID
handling by identifying these system class-originating APIs along
with their associated keys. This manual analysis is per ad SDK, but
AlfScan is designed for adaptability, capable of accommodating
new SDKs through the specifications of system class-originating
APIs and the key of key-value pairs.
Build CFG to learn the contextual information of the system

class-originating APIs. Only using the keys to determine which
json.put() ormap.put() API handles the AppID leads to false positives
because other SDKs or developers may use the same keys with the
same system class-originating APIs but for different purposes. For
instance, analytics SDKs may encapsulate the app’s name with a
key like “app_id” into a JSON or Map object to gather information
about app usage, which is unrelated to advertising.

To address this issue, AlfScan takes a more robust approach. It
considers not only the keys but also the contextual information of
the system class-originating APIs above in each ad SDK, reducing
the risk of misidentifying objects that are not relevant to advertising.
By constructing a control flow graph (CFG) of the whole class
which contains the system class-originating APIs above in each ad
SDK,AlfScan learns the distinct contextual information associated
with the APIs. The insight is that the contextual information of
the system class-originating APIs with the same key but different
purposes in different SDKs or classes differs. By comparing the
contextual information extracted from the CFGs in the detected
apps with the known contextual information of the 15 ad SDKs,
AlfScan can identify whether an API serves an advertising-related
purpose or another purpose.
Build DDG of the system class-originating APIs’ parameters

to get the AppID dependencies. The static analysis module uti-
lizes CFGs to locate the system class-originating APIs responsible
for encapsulating AppIDs into JSON or Map objects. These APIs’
parameters (i.e., AppIDs) are then treated as the target for backward
slicing to get the value of AppIDs. To achieve this, we customize
a backward slicing tool based on the work of Zhu et al. [68]. By
applying this tool, we generate a data dependency graph (DDG).
It includes all the data that make up the AppIDs, where each node
represents the assignment statement for AppIDs, and each edge
represents the dependency relation between the two statements.
We can find out what data have been used to form the AppIDs and
where the AppIDs are assigned in DDG.

Additionally, we have optimized the logic of the tool proposed
in [68] to improve runtime efficiency. Irrelevant functions, such as
the feature extraction module in [68], have been removed, focusing

Algorithm 1 Directed Fuzzing Algorithm
Input: 𝐴𝑝𝑝 ,𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝐷𝐺

Output: 𝑆𝑒𝑡𝐴𝑝𝑝𝐼𝐷

1: 𝐶𝐺 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ (𝐴𝑝𝑝)
2: 𝑀𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝐷𝐺 ,𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←∞ for all𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝐷𝐺

3: 𝑄𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 ← ∅ ⊲ Priority queue
4: while ¬(𝑇𝑖𝑚𝑒𝑜𝑢𝑡 | |𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) do
5: if 𝐻𝑎𝑙𝑡𝑒𝑑 then

6: 𝑠 ← Sample(𝑄𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡)
7: 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 (𝑠)
8: end if

9: 𝐻𝑖𝑡𝑠,𝐴𝑝𝑝𝐼𝐷 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝐴𝑝𝑝)
10: 𝑆𝑒𝑡𝐴𝑝𝑝𝐼𝐷 ← 𝑆𝑒𝑡𝐴𝑝𝑝𝐼𝐷 ∪𝐴𝑝𝑝𝐼𝐷
11: for 𝑡 ∈ 𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝐷𝐺 do

12: 𝐷 ← min(𝐷𝑖𝑠𝑡 (𝐶𝐺,𝐻𝑖𝑡𝑠, 𝑡))
13: if 𝑀𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡,𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡) > 𝐷 then

14: 𝑄𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 ← (Snapshot(), 1/𝐷)
15: 𝑀𝑎𝑝𝑇𝑎𝑟𝑔𝑒𝑡,𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡) ← 𝐷

16: end if

17: end for

18: end while

19: return 𝑆𝑒𝑡𝐴𝑝𝑝𝐼𝐷

solely on detecting ALF . Moreover, we have restructured the enu-
meration loop operation using a map, resulting in a reduced time
complexity of O(N).

4.2.2 Dynamic Analysis Module. If the static analysis module only
identifies zero or one hard-coded AppID, the directed fuzzing algo-
rithm (Algorithm 1) takes an application (𝐴𝑝𝑝) and a set of targets
(𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝐷𝐺) gained from the DDG generated by static module,
which are the methods that retrieve, set, or transfer the value of
AppIDs, as input. It then outputs the value of dynamically loaded
AppIDs after running the apps.
Build call graph to explore the specific user interaction se-

quences triggering ads. AlfScan utilizes a call graph (CG) to
investigate the specific sequences of user interactions required to
trigger ads and prioritize component exploration based on their
proximity to targets, increasing the likelihood of hitting relevant
classes. In detail, the algorithm consists of a main loop (Line 4-15)
that continues until a terminating condition is met. We employed a
constant timeout or coverage saturation as the terminating condi-
tion, i.e., triggering all the ads loading functions on the CG or when
a timeout set by the user is reached (Line 4). If the application is
halted (Line 5), which might be the app no longer showing up new
screens, the algorithm samples a snapshot from a priority queue
(Line 6), which is likely to be in a state closer to the target. The algo-
rithm then performs random actions on the application, resulting
in hit classes (𝐻𝑖𝑡𝑠) and a dynamically loaded AppID (𝐴𝑝𝑝𝐼𝐷). For
each target (Line 11), the algorithm calculates the shortest distance
(𝐷) between the hit classes and the target using the call graph (Line
12). This distance serves as a heuristic to guide the exploration
process toward the target, which are methods that retrieve, set, or
transfer the value of AppIDs.
Use VM-level snapshotting to minimize the impact on app

execution. Limited code instrumentation and VM-level snapshot-
ting minimize the impact on app execution and enable the seamless

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

continuation of exploration towards the targets without additional
app-level instrumentation or symbolic evaluations. In detail, we
maintain a priority queue of snapshots instead of heavy methods
like symbolic execution or complete coverage instrumentation to
explore the paths to hit relevant targets. If the minimum distance
for a target is greater than the calculated distance (Line 13), the
priority queue and the minimum distance mapping are updated
with a new snapshot and its priority (Line 14-15). This prioritization
strategy ensures that the algorithm favors exploring paths closer
to the target via snapshotting, minimizing instrumentation when
exploring the paths to hit relevant targets.

4.2.3 Final Decision Module. If the static module fails to find more
than one app’s AppIDs, the dynamic module is employed for fur-
ther analysis on whether the app has dynamically loaded AppIDs.
If no AppID is found, it indicates that the app’s ad loading code
may be inactive, resulting in the app being categorized as benign.
When multiple AppIDs are detected in an app, AlfScan regards
it as fraudulent. For apps with a single AppID, AlfScan examines
whether other apps in the dataset share the same AppID with it. If
they do, all apps are classified as fraudulent; otherwise, they are
deemed benign. Note that despite our dataset including over 91, 000
apps, there remains a possibility of fraudulent apps sharing the
same AppID with apps not included in our dataset. This limitation
is discussed in Sec. 8.1.

5 EVALUATION

In this section, we illustrate the performance of AlfScan. All ex-
periments are performed on a Windows 10 Desktop, equipped with
an Intel i9-10900 CPU and 128 GB of RAM.

5.1 Data Collection

We use three different datasets in this paper. Two datasets contain
the apps downloaded from Androzoo [3], a well-known collection
of Android applications widely used in the research community [35,
12, 9, 42]. One dataset contains ad bid logs generated by mobile
devices during one day. We briefly introduce each dataset below.
Our dataset can be found in https://github.com/Firework471/Ad-
Attribution-Laundering-Apps-Dataset.
Large-scale Dataset. We download unique apps (i.e., apps with
different package names) from Androzoo between January 1st, 2021
and November 30th, 2022, resulting in a total of 155, 000 unique
apps. Since our focus is on detectingALF, we specifically target apps
that utilize ad SDKs. To this end, we select 15 popular ad SDKs, ten
of which are highly rated ad networks according to AppBrain [4],
while the remaining SDKs are highly rated ad networks according
to the reports from two leading Chinese app stores and app devel-
opment platforms [5, 11]. As shown in Table 1, by filtering out apps
that do not integrate any of these 15 ad SDKs, we obtain a dataset
of 91, 006 unique apps as our large-scale dataset for performance
evaluation and large-scale analysis. We use this dataset to perform
ALF investigation in Sec. 6 and Sec. 7.
Ground-truth Dataset. In the absence of established benchmarks,
we manually label 200 apps containing 100 fraudulent examples and
100 benign examples as our ground truth dataset for accuracy tests.
We start our research with 14 fraudulent apps from our industry

Fig. 6: The comparison of the performance of dynamic mod-

ule in AlfScan with other fuzzing tools.

partner (a third-party ad verification company), which are thus
included in the ground-truth. The remaining samples in the ground-
truth are uniformly sampled from the whole dataset. Two Ph.D.
students examined and ran apps to determine if they were involved
in ALF . Fraudulent samples are double-checked with the industry
partners for special case handling, such as scenarios like varying
AppIDs from different download channels or different versions of the
same app. The final decisions were made by aligning with industry
standards and best practices. We use this dataset to evaluate the
performance of AlfScan in Sec. 5.
Ad Bidding Log Dataset.We also obtain one day’s bidding logs
from a real-world scenario of one of the aforementioned ad net-
works (i.e., Baidu Network) through our collaboration with our
industry partner. This access to real-world bidding logs enables us
to gain valuable insights and conduct a more in-depth analysis of
the fraudulent schemes employed by ALF . We use this dataset to
estimate the loss ALF can cause in the real world in Sec. 6.

5.2 Performance of AlfScan

Effectiveness: We run AlfScan on our ground truth dataset. Alf-
Scan achieves a precision of 92%, an accuracy of 94%, and a recall of
92%. The F-Score is 92%. Notably, there are eight false positives, and
all of them contain multiple hard-coded AppIDs in their codes. Fur-
ther investigation reveals that these developers own multiple apps
and employ a shared code snippet containing all their legitimate
AppIDs, but only return the corresponding AppID based on the app’s
package name. The static analysis techniques used in the static
module struggle to handle these scenarios, mistakenly regarding
the AppIDs within all conditional branches of the code snippet as
the AppIDs that the app would use. Note that directly flagging apps
with multiple AppIDs as potentially fraudulent in static analysis
significantly reduces analysis time compared to additional dynamic
analysis (15s vs. over 15mins per app). To achieve optimal accuracy,
the dynamic module can be utilized to recheck apps with multiple
hard-coded AppIDs detected in the static analysis module, thereby
enhancing the accuracy of AlfScan. In the large-scale analysis
conducted in Sec. 6, we prioritized accuracy over time efficiency
and found no false positives in the randomly sampled 50 apps from
those fraudulent apps detected in the large-scale analysis. Regard-
ing the four false negatives, they are due to the limitations of the
dynamic module in analyzing encrypted AppIDs or packed apps. We
will discuss potential solutions for addressing false positives and
false negatives in Sec. 8.1.

https://github.com/Firework471/Ad-Attribution-Laundering-Apps-Dataset
https://github.com/Firework471/Ad-Attribution-Laundering-Apps-Dataset

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Number of apps with each ad network’s SDK in our large-scale dataset.

SDK Name Google Adcolony Huawei Unity Facebook Inmobi Applovin Amazon

Num of apps with this SDK 78,890 22,550 6,344 30,183 37,702 15,219 12,843 3,568
SDK Name Ironsource Oppo Vungle Tencent Mintegral Baidu Bytedance \

Num of apps with this SDK 8,548 1,332 8,043 7,078 3,033 2,124 7,359 \

Additionally, we check the status of fraudulent apps identified
by AlfScan on May 25, 2023 in Sec. 6. It is observed that 79.22% of
these apps have been removed by app markets, while the remaining
apps are still publicly available. We are actively engaging with
relevant ad networks to facilitate responsible disclosure of our
findings.
Efficiency: We conduct further evaluations to assess the efficiency
of AlfScan using a randomly selected subset of 100 unique apps
from our dataset. For the static module, the average examination
time for each unique app is 14.76 seconds. While there is no existing
tool that precisely fulfills the same purpose, we chose the state-
of-the-art Android backward slicing tool ClickScanner[68], which
has a similar goal to us, to compare the performance of AlfScan
’s static module. The results indicate that ClickScanner takes an
average of 21.74 seconds per app on the same task, making it 47%
slower than our static module.

Moving on to the comparison of our dynamic module with Mon-
key [51] and Time Machine [19], we employ Frida instrumentation
to enable Monkey and Time Machine to fuzz apps for collecting
ad hit information and AppIDs. Monkey randomly simulates user
interactions with the test apps, aiming to trigger ads. On the other
hand, Time Machine takes random snapshots of the test app when
specific screens are reached, allowing for recovery to a non-hanging
state for further exploration. In contrast, our approach only takes
snapshots when the current exploration of the test app aligns with
the targets based on the control graph (CG).

The results, illustrated in Fig. 6, depict the number of apps in
which the targets (i.e., triggering ads) are successfully hit over time.
Within a span of 60 minutes, Monkey and Time Machine reach
the targets in 24 apps and 60 apps, whereas AlfScan successfully
processes all 100 apps. Due to the requirement of a sequence of
complex user interactions to trigger most targets, Monkey’s perfor-
mance is sub-par as it is unable to navigate to deep states. Although
Time Machine manages to explore deeper states, real-world apps
often possess a vast number of states, and randomly exploring each
state makes it challenging to reach the target efficiently.

6 LARGE-SCALE ANALYSIS

In this section, we provide the first large-scale analysis of the ALF
in the wild and present our findings. AlfScan successfully iden-
tifies 4, 515 unique fraudulent apps out of the total 91, 006 apps,
accounting for 4.96% of the dataset. Two or more fraudulent apps
will drive the ad traffic for the same AppID to form a cluster. Alf-
Scan identified 1, 483 fraudulent clusters. Note that we optimize
the accuracy in the large-scale analysis by utilizing the dynamic
module to recheck apps identified as potentially fraudulent due to
multiple hard-coded AppIDs in static analysis. In the following, we
present the findings of our large-scale analysis. This comprehen-
sive list categorizes fraudulent clusters involving high-download

fraudulent apps by ad SDK, AppIDs, and developers. And it has been
shared with relevant ad networks for further action.

6.1 Characterizing ALF

Finding 1: ALF can amplify ad traffic with a considerable factor,

ranging from 2.43 times to 33.33 times.

Our research aims to assess the extent to which the ALF activity
can amplify ad traffic and quantify the loss of advertisers based
on real-world bidding logs from the Baidu Network mentioned in
Sec. 5. Each ad bidding log is marked with the App’s name and
its AppID. Since each AppID is officially assigned to one app, we
define the ad traffic amplification factor (ATAF) given a fraudulent
cluster as the ratio of the total traffic generated by the cluster to the
traffic generated by the app (denoted as legit-app) that actually own
the corresponding AppID. Due to the lack of one-to-one mappings
between AppIDs and legit-apps (which are regarded as sensitive
and private by ad networks), we make various assumptions on the
mappings and estimate the traffic amplification factors accordingly.
As shown in Table 2, the traffic amplification factor ranges from
2.43× (under the most conservative assumption) to 33.33× (under
the most aggressive assumption).
Estimation E1: 2.43×, estimated by assuming that the legit-app
is the one that generates the maximal traffic in the cluster.

Assuming that the legit-app1 is the one with maximal traffic in each
fraudulent cluster would result in the most conservative estimation
of the ATAF. In detail, we introduce Equation 1, 𝐴𝑇𝐴𝐹𝐸1 specifi-
cally tailored for scenario Estimation E1. Here, 𝑛 signifies the total
number of apps, while 𝑇𝑖 denotes the traffic generated by the 𝑖-th
app (𝑖 = 1 . . . 𝑛);𝑚 represents the total number of clusters, with
𝐶 𝑗 ⊂ {1, . . . , 𝑛} representing the set of indices of apps within the
𝑗-th cluster (𝑗 = 1 . . .𝑚). The numerator represents the total traffic
generated by all apps, while the denominator accounts for the sum
of the highest traffic volume within each cluster, emphasizing the
average amplification factor in all fraudulent clusters.

ATAF𝐸1 =
∑𝑛
𝑖=1𝑇𝑖∑𝑚

𝑗=1max𝑖∈𝐶 𝑗
𝑇𝑖
. (1)

We start the estimation with a concrete case shown in Fig. 7. We
discovered 6 overlapped fraudulent clusters with 17 apps with a
total of over 77 million downloads searched on [45]. These apps
share 6 AppIDs, with the width of each stream indicating the num-
ber of real-world bidding logs generated by these apps on Baidu

Ad Network with the corresponding AppID within one day. This
fraudulent activity aims to generate excessive ad traffic for specific
AppIDs, increasing advertising revenue beyond what these AppIDs

1If an app has the highest ad traffic in multiple clusters, we only consider it as the
legit-app in the cluster where it has the largest absolute value of traffic. For other
clusters, we consider the apps with the second highest traffic as the legit-app. This
approach is applied consistently to the other assumptions.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

e8455db5

e939a7bc

beb8e0ae

fbe07b49

a870e8b5

b00f864d

com.blu.ebook

com.booksea.ebook.s

com.duo.txtreader
com.free.txtreader
com.ranwen.reader.s
com.shou.deng

com.shuji.reader

com.bookstore.txtreader.s
com.countless.ebook.s
com.duokan.reader.s

com.yel.reader

com.leb.quanbenreader

com.shuku.ebook.s
com.xianshu.ebook

com.leg.txt.txtreader
com.shouji.reader
com.mianfeinovel

APP ID APP NAME

Fig. 7: 17 fraudulent apps and 6 collusion-based AppIDs with

their real-world ad bidding logs. It is estimated that over 65%
of the ad bidding logs are suspected to be fraudulent under

the most conservative assumption.

Table 2: Estimation of ad traffic amplification factors (ATAF)

by ALF under different assumptions.

Estimation with real-world bidding logs

Assumption ATAF

E1: the legit-app is the one that generates the maximal traffic 2.43×
E2: the legit-app is the one that generates the minimal traffic 33.33×

deserve since one AppID should only accept advertising traffic from
one unique app. Our most conservative estimate suggests that over
65% of the real-world bidding logs in Fig. 7 are likely fraudulent.
This implies that at least 65% of the advertising revenue invested in
these apps is at risk of fraud or may not yield the expected results.
These clusters potentially amply ad traffic by at least 2.86×.

Based on the bidding log data we had, expanding our analy-
sis to all fraudulent clusters identified by AlfScan involving the
Baidu Ad Network SDK (i.e., corresponding to 148 fraudulent apps),
we observe that 59% of the real-world bidding logs generated by
these clusters (i.e., 5.34 million logs) in one day are suspected to
be fraudulent. Fraudsters can at least amply ad traffic by 2.43×.
Calculated from the average bid value of $3.55 CPM[65] (USD 3.55
per 1000 impressions) in the online advertising, the potential loss
attributable to these fraudulent clusters, which only involves 148
fraudulent apps, could amount to a staggering $18,950 in one day!
This highlights the ability of the ALF to greatly amplify fraudulent
ad traffic and defraud ad revenue.
Estimation E2: 33.33×, estimated by assuming that the legit-
app is the one that generates theminimal traffic in the cluster.

The intuition for this extreme scenario is that fraudsters strategi-
cally employ disposable apps to minimize the risk of detection
and shift the potential of being banned to these disposable apps,
while concealing the fraudulent activities of their legit-apps. This
tactic spreads ALF activities across numerous disposable apps, re-
ducing detection risk on legit-apps, and consequently generating
larger ad traffic on disposable apps. This deceptive strategy will be
thoroughly discussed in Sec. 7 with a concrete case. Similar to the
previous formula, we illustrate Equation 2 under this scenario as
below:

ATAF𝐸2 =
∑𝑛
𝑖=1𝑇𝑖∑𝑚

𝑗=1min𝑖∈𝐶 𝑗
𝑇𝑖
. (2)

Based on the aggressive assumption above, we uncovered a
shocking 33.33× amplification in ad traffic, suggesting that up to
97% of bidding logs from these clusters could be fraudulent under
this extreme assumption. This illustrates the alarming extent to
which ALF activities can undermine the integrity of the mobile
advertising ecosystem.

6.2 Patterns in Fraudulent Clusters

Finding 2: Over 74% fraudulent clusters are composed of same-

certificate apps or apps with certificate validity start date intervals

of less than one month, which could enhance AlfScan’s detection

efficiency.

We retrieve public certificates from fraudulent apps and get their
SHA1 values to identify developers. Android apps use unique pri-
vate keys, each linked to a public certificate for source verification.
This correlation helps us identify apps with the same developer.

We find that on average, each AppID is shared by 4.29 apps, but
is shared by only 2.56 app certificates. In detail, as shown in Fig. 8,
AlfScan identified 1, 483 fraudulent clusters. For 777 (52.4%) of
them, all apps in each cluster use the same certificate, indicating
that they are developed by the same developer/group. Moreover,
there are 101 fraudulent clusters (6.8%) where at least two or more
apps in each cluster use the same certificate. This suggests that
fraudulent developers tend to engage in ALF individually or in
collaboration with a limited number.

In the remaining 605 clusters (40.8%), all apps in each cluster
use different certificates. Further investigation revealed that while
the certificates of these apps are different, the certificate validity
start date intervals (CVSDI) between the certificates within 54%
of the clusters are less than one month. The certificate validity
start date is the specific date and time at which a digital certificate
becomes valid and can be used for encryption and authentication.
CVSDI refers to the time differences between the starting dates of
digital certificates. In 61% of the clusters, the CVSDI between the
certificates is less than three months, and in 84% of the clusters, it is
less than one year. This suggests that fraudsters may intentionally
create or acquire new certificates and create new collaborative
apps signed by the certificates above within these clusters after a
certain period to conceal their deceptive activities. Alternatively,
they might spend a period of time searching for collaborators to
carry out the ALF .

While collusion among fraudulent apps in ALF makes finding
fraudulent apps’ accomplices difficult and complicates detection,
fraudulent apps’ certificates offer valuable insights to enhance Alf-
Scan’s detection efficiency. We can use the certificates’ information
as a heuristic to scan apps with the same certificate or shorter
CVSDI first, in the hope of discovering collaborative apps sooner
than a random scan order. We conducted experiments to validate
this approach: Experiment 𝐸𝑋𝑃random scanned all apps randomly,
while Experiment 𝐸𝑋𝑃heuristic scanned apps sorted by certificate
information. After scanning 25% (50%, 75%) of the apps, 𝐸𝑋𝑃random
and 𝐸𝑋𝑃heuristic reported 947 vs 1784 (2771 vs 3492, 3431 vs 4241)

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

605 clusters, each containing apps

all signed by different certificates.

777 clusters, each containing apps

all signed by the same certificate.

101 clusters, each

containing at least two or

more apps signed by the

same certificate.

A cluster

A cluster

……

A cluster

40.8%

6.8

%

52.4%

CVSDI<1 mth

CVSDI

in 1~3

mths

CVSDI

in 3~12

mths

CVSDI

>12

mths

Fig. 8: Certificate overlap and certificate validity start date

intervals (CVSDI) among apps in clusters indicate that 52.4%

of fraudulent clusters are composed of apps from the same

source, while in the remaining clusters, the majority of apps

have CVSDI within 1 month.

fraudulent apps, respectively. The sooner we can identify the fraud-
ulent apps, the smaller the financial impact on the advertisers.

6.3 Reliability Issues of Third-Party App

Development Frameworks

Finding 3: 293 fraudulent apps (corresponding to 6.5% of all fraud-

ulent apps) share only four AppIDs, which are generated by four third-

party frameworks.

We discover another type of the AppIDs which are default Ap-
pIDs generated by third-party frameworks. These frameworks aid
developers in app development. They insert default AppIDs during
the initial app creation process if developers try to integrate the ad
in their apps, potentially leading to fraudulent clusters. AlfScan
identifies 293 unique apps (6.5% of all fraudulent apps) developed
by different developers that share 4 default AppIDs generated by 4
third-party frameworks, resulting in 4 clusters. We conduct further
analysis on these default AppIDs to gain deeper insights into the
implications of them in ALF .

We begin with apps created by Kodular [32], a free platform that
transforms developers’ ideas into Android apps. Upon investiga-
tion, AlfScan detects an AppID (i.e., 3140736) provided by the Unity
Ad Network, which is shared by 141 apps. Analyzing the decom-
piled codes of these apps shown in Fig. 9(a), we discover that all
of them were generated by Kodular. If developers fail to specify
their own Unity AppID at the beginning, Kodular inserts a default
Unity ad AppID (i.e., 3140736), assigned with the variable named
“UNITY_ADS_GAME_ID”, into the generated apps for ad loading.
In cases where developers neglect to replace these default AppIDs
before releasing the apps, their apps are unknowingly utilized to
drive ad traffic for these default AppIDs. Although we cannot defini-
tively determine if apps containing such AppIDs are intentionally or
unintentionally fraudulent, payments made to accounts associated
with these AppIDs do undermine the interests of advertisers, who
could consider such behaviors fraudulent. ALF through third-party
frameworks can lead to substantial financial losses for advertisers,
as third-party app development platforms typically involve a vast
number of apps.

public class KodularAdsUtil {

1. public static final String UNITY_ADS_GAME_ID = "3140736";

……
}

public class UnityAdsProperties {

1. public static String UNITY_ADS_GAME_ID = null;

……
}

(a) A potentially fraudulent third-party platform “Kodular” inserts a default
Unity ad AppID “3140736” in the apps generated by it if the developers didn’t
specify their own Unity AppID at the beginning.

public class KodularAdsUtil {

1. public static final String UNITY_ADS_GAME_ID = "3140736";

……
}

public class UnityAdsProperties {

1. public static String UNITY_ADS_GAME_ID = null;

……
}

(b) The code snippet provided by Unity which helps developers develop apps
predefines the Unity ad AppID as “null” at the beginning.

Fig. 9: The code snippets in Finding 3.

Subsequently, we contact the Unity Ad Support team and report
our findings. They confirm that AppID 3140736 have been involved
in fraudulent activities. The total download count of the detected
apps involved in the fraudulent cluster formed by Kodular surpasses
8, 000, 000, resulting in significant losses for advertisers.

Typical third-party development frameworks usually provide a
placeholder like “YOUR_OWN_APPID” or a null string, allowing de-
velopers to replace it with their own AppID. As depicted in Fig. 9(b),
this practice is from Unity’s third-party auxiliary development code
aimed at facilitating the integration of Unity ads. It serves as a good
example for third-party app development platforms to consider
when regarding the use of default AppIDs.

7 CASE STUDIES

In this section, we investigate more sophisticated ALF schemes. We
dive into three representative cases and share the insights.
Case 1: Remote configurations facilitate changes of dynam-

ically loaded AppID in ALF . Some fraudulent apps predefine a
local AppID in their code. They dynamically retrieve the configura-
tion of another AppID from a remote server and dynamically change
the AppID according to the configuration to conduct the ALF .

In our investigation, as shown in Fig. 10, AlfScan identified an
app named com.koodroid.chicken with over 40 million downloads
that is conducting the ALF . The app initially sets a predefined
AppID in an AdInstanceID object. It first loads a configuration from
a specific URL[15] and gets the configuration file at Line 1. Then
it retrieves the dynamically loaded AppID from the file at Line 2. If
the dynamically loaded AppID is null, the app resorts to displaying
the ad using the local AppID (Line 4 and 6). Otherwise, the app
displays the ad using the dynamically loaded AppID (Line 2 and 6).
This approach allows fraudsters to dynamically change the AppID
according to different situations, evading detection and further
exploiting the advertising ecosystem.
Case 2: Disposable apps shield high-profile apps frommarket

bans. In order to protect their high-profile apps from being banned
by app markets, fraudsters employ a tactic where they create dispos-
able apps to covertly drive ad traffic for their high-profile AppIDs.
They buy or create less popular apps at a low cost to carry out
large-scale ALF activities. By doing so, they shift the risk of being
banned onto these disposable apps. The purpose of this strategy is
to minimize the ALF activities on their high-profile apps and avoid

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

public static boolean AddQQSplashAd(Activity arg12) {

1. SharedPreferences file = arg12.getSharedPreferences(arg12.getPackageName(),0);
2. String appid = file.getString("qq_app2_key", "");

3. if(appid.isEmpty()) {

 //The default AppId is stored locally in the AdInstanceID.

4. appid = AdInstanceID.getQQKey();

5. }

6. new SplashAD(appid); //Load ads using final AppId.

}

Fig. 10: The code snippet from case 1. The app receives the

AppID sent from the remote server.

public WebNewsFrg() {

1. String appid;

2. if(adCondition()){

3. appid = "d7d3402a";

4. String adUrl = "http://cpu.baidu.com/1021/"+appid+"a?chk=1";

5. WebNewsFrg adView = new com.duoduo.oldboy.ui.view.frg.WebNewsFrg(adurl);

6. }else{

7. appid = "c9e0f226";

8. BaiduNative.setAppSid(appid);

9. }

}

Fig. 11: The simplified code snippet from the case 3. Fraud-
ulent apps load the ad with the same AppID by abusing the

interface of the ad network to avoid SDK’s verification.

detection or banning by app markets. These less popular apps serve
as “bagmen” for the ad traffic for specific AppIDs.

For instance,AlfScan has identified two fraudulent apps, namely
com.chillyroom.happy and com.hj.tlhg. Upon further analysis, we
discover that the high-profile app com.chillyroom.happy is a game
application available on Google Play with over 1 million downloads.
On the other hand, the disposable app com.hj.tlhg is a game applica-
tion that is not commonly found on mainstream app markets. Both
apps generate ad traffic using the same AppID distributed by Google
Admob. The Google Admob stated that "an app ID is a unique ID
number assigned to apps"[24]. However, these two apps break this
rule. Furthermore, upon uploading them to VirusTotal[54], the high-
profile app passes all engines’ detection, while the low-quality app
is flagged as a Trojan. This implies that the advertising traffic gener-
ated by the low-quality app, which could be originally barred from
passing app market and advertising network reviews, and unable
to obtain a legal AppID for advertising activities, is now erroneously
attributed to the high-profile app. Consequently, the low-quality ad
traffic generated by the disposable app can be monetized through
the high-profile app’s AppID. Fraudsters typically distribute these
disposable apps through unofficial channels, such as forum posts
with download links or non-mainstream app markets.

Moreover, we observe that both of the apps above share the same
developer certificate, indicating that they are developed by the same
individual or group. However, while we find information about the
high-profile app com.chillyroom.happy on the developer’s website
and in their app-ads.txt file, there is no mention of the disposable app
com.hj.tlhg anywhere. This suggests that fraudsters intentionally
conceal the association with disposable apps and avoid leaving
traces of them to make detection difficult.

The damage caused by this strategy is substantial due to the low
cost associated with creating disposable apps. Fraudsters have no
intention of updating these disposable apps in the future and are
not concerned about their banishment by app markets.
Case 3: Fraudsters abuse the interface of the ad networks

to evade SDKs’ verification and conduct ALF . Fraudsters em-
ploy various tactics to evade data collection and verification by ad

networks, making it easier to conduct ALF . Ad networks typically
provide APIs through their official ad SDKs for developers to load
ads. These SDKs often collect device information for verification
purposes. However, AlfScan discovers that some fraudulent apps
load ads with the AppID assigned by the Baidu Ad Network without
utilizing its official SDK, resulting in the poor verification of apps.

Upon further analysis in Fig. 11, we find that these apps con-
struct a URL containing the fraudulent AppID “d7d3402a” (Line 4)
under certain conditions (Line 2) and load the ad using a WebView
(Line 5). The variable appid (Line 1) used to build the URL is also
employed by the SDK API (Line 7 and 8) to load ads with another le-
gitimate AppID “c9e0f226” under specific conditions. Consequently,
the DDG generated by AlfScan contains both values of the vari-
able. We inspect the URL and speculate that it corresponds to the
URL of the Baidu Ad Network advertising content pool with the ad
distribution service. Moreover, we find real-world bidding requests
of the fraudulent AppID from the aforementioned apps in our bid-
ding log dataset, indicating that exploiting the vulnerability in the
permission management of the ad network’s interface and utilizing
this URL can drive traffic to the fraudulent AppIDs effectively.

By abusing the interface of the ad network, fraudsters can con-
veniently circumvent the verification and information collection
performed by SDKs. This scheme simplifies the execution of ALF .
We recommend that ad networks implement stricter permission
management for similar interfaces to prevent abuse by fraudsters.

8 DISCUSSION

8.1 Limitations of AlfScan

Multiple AppIDs in dead codes. To enhance runtime efficiency,
AlfScan directly regards apps with multiple AppIDs, flagged by the
static module, as potentially fraud. However, this approach may
yield false positives. For example, some developers own multiple
legitimate apps, each app with a different AppID. For convenience,
developers may employ a shared code snippet that encompasses
all their legitimate AppIDs for advertisements across all their apps.
The static module may erroneously consider all AppIDs in the code
snippet as active, although this code can only return one AppID
associated with a specific app based on different app names. Other
AppIDs in the snippet are relegated to dead code conditions and will
never be active. To mitigate this, the dynamic module can double-
check apps with multiple hard-coded AppIDs, though it is slower.
Fortunately, this issue is rare, affecting only 8 benign apps in our
ground-truth dataset.
Encrypted or packed AppIDs. Sly fraudsters may use encrypted
AppIDs or packed apps to evade AlfScan detection, leading to false
negatives. Encrypted AppIDs can’t be identified without decryption,
and packed apps can hide DEX files from analysis. To address
these limitations, future improvements can include unpacking tools
like Happer [61] for packed apps and analyzing ad traffic between
fraudulent apps and ad networks to reveal the true AppIDs.
Incomplete fraudulent clusters. Despite our dataset containing
over 91, 000 apps, fraudulent apps may still share the same AppID
with uninvolved apps outside our dataset. AlfScan’s performance
can be enhanced by expanding the dataset with additional sources.

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

8.2 Responsible Disclosure

In March 2023, we reported our findings to 15 ad network compa-
nies. Unity ad team replied within one day and confirmed that the
flagged AppIDs reported by us, involving 344 apps embedding their
ad SDK, were flagged as fraudulent by them, validating our detec-
tion results. Three mainstream ad companies (i.e., Vungle, Baidu,
Tencent) replied to us within one week, expressing a strong interest
in our detection results and the tool’s details. We will continue to
follow up with other ad network companies for feedback. Addition-
ally, we have also reported our results to the IAB Tech Lab [27],
a global nonprofit organization that develops technical standards
and solutions to enhance security, interoperability, and innovation
in the digital advertising industry. We are working together with
China Advertising Association to promote the establishment of
new ad fraud detection standards to defeat ALF in ad networks.

9 RELATEDWORK

Previous studies primarily focus on addressing mobile ad fraud
within individual apps, overlooking collaborative ad fraud across
multiple apps. Other studies focusing on app collusion attacks
often assume the involvement of at least one entity experiencing
malicious events or there were communication issues between
them. The legitimacy of ad events and attribution procedures on
individual apps in our newly identified ALF presents challenges
for existing methods, highlighting the need for detection across
multiple apps to identify shared AppIDs.
Detection of fake ad events. Existing works, designed to identify
deceptive or counterfeit ad events within a single entity, fall short
in effectively addressing ALF . Crussell et al. [17], Cao et al. [13],
Christin et al. [14] and Zhu et al. [68] dissect the click fraud. Kim
et al. [30] deploy FraudDetective to identify fraudulent clicks via
reasoning based on observed suspicious behaviors without user
interactions. Lee et al. [34] propose AdCube and identify four new
impression frauds and click frauds on VR. Dong et al. [18] and
Crussell et al. [17] analyze impression fraud. Liu et al. [37] design
DECAF to detect placement fraud. Sun et al. [49] and Xu et al. [60]
propose EvilHunter and FeatNet to detect device farms. Zeng et
al. [66], Zarras et al. [63], Pochat et al. [33], Zeng et al. [64], Walls
et al [55] and Akgul et al. [2] do great work on the potentially
problematic content of the ads. Pearce et al. [41] have undertaken a
detailed examination of the activity of one of the largest click fraud
botnets in operation. Stone-Gross et al. [48] present a detailed view
of how one of the largest ad exchanges operates and the associated
security issues. However, ALF entails genuine ad events and user
interactions, involving collusion in ad attribution across multiple
entities and adhering to standard mobile ad display processes which
makes it difficult to detect.
Detection of false attribution. Current false ad attribution detec-
tions typically focus on website-based advertising or single-entity
attack scenarios. Kline et al [31] detect ad misrepresentation fraud
on the websites. Vekaria et al. [53] find that dark pooling allows
misinformation sites to deceptively sell their ad inventory to rep-
utable brands. However, both of them are confined to website-based
advertising and fail to tackle the distinctive challenges specific to
the mobile advertising ecosystem. This includes the critical task
addressed in this paper—extracting the identities of the apps and

cross-checking them with the AppIDs. In the industry, the IABtech-
lab [27] has prioritized addressing app misrepresentation fraud [25]
by a whitelist of the authorized ad inventory, while AppsFlyer [7]
has concentrated on installation hijacking [8]. These efforts aim to
combat the manipulation of attribution data to falsely claim credit
for legitimate ad events. However, their scope is limited to scenarios
only involving a single entity launching the attack.
Detection of app collusion attack. Existing app collusion at-
tacks typically involve at least one entity with malicious events
or issues with communication between them. Traditional methods
detect collusive behavior in apps by identifying suspicious activi-
ties or communication within individual apps or between apps. Li
et al. [36] find cross-app WebView infection across different apps.
Zhang et al. [67] detect a runtime information-gathering collusion
attack through side-channel information, such as thread names.
Bosu et al. [10] identify a collusive data leak attack that mostly uses
implicit intents. Elish et al. [21] analyze the inter-app communi-
cation flow to identify various collusion attacks. Wang et al. [56]
identify collusion attacks that can compromise user privacy by
examining inter-app communication channels. Liu et al. [38] con-
struct a large-scale inter-component communication (ICC) graph
to assess ICC vulnerabilities. However, all ad events and the com-
munication between apps and networks within ALF appear normal
which makes these methods ineffective for ALF detection.

Besides, we have not found any app market that claims to ensure
the AppID-to-app relationships, though AppID-to-app one-to-one
mapping has been officially defined by IAB[28], MRC[40], and in-
dustry players such as Google[24, 23]. Given the unique challenges
of detecting ALF , particularly in identifying and extracting mobile
application identities (i.e., AppID), we are not aware of any existing
tool available for app markets to detect ALF .

10 CONCLUSION

In this paper, we identified a new form of ad fraud, named ALF . It
is based on collusion among multiple seemingly legitimate apps,
which challenges existing detection mechanisms designed for a sin-
gle fraudulent entity. We introduced AlfScan, the first automatic
tool to detect ALF . AlfScan analyzes the apps using both static
and dynamic techniques with high accuracy and efficiency. We con-
ducted a large-scale analysis on 91, 006 real-world apps, AlfScan
flags 4, 515 as fraudulent and identified 1, 483 fraudulent clusters.
After reporting our results to 15 ad networks, we received positive
feedback from 4 teams. In particular, our submitted flagged AppIDs
with their associated 344 fraudulent apps have been confirmed by
the Unity ad team, which highlights AlfScan’s effectiveness.

ACKNOWLEDGEMENTS

We thank the anonymous shepherd and reviewers for their insight-
ful comments. The authors from Shanghai Jiao Tong University
were partially supported by the National Natural Science Founda-
tion of China (No. 62325207, 62332013, 62302298). We would like
to express our gratitude to the ad verification company RTBAsia
(contact: Qiuhua Fan) and the China Advertising Association for
their invaluable assistance in analyzing the fraudulent examples.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Tong Zhu et al.

REFERENCES

[1] Adcolony. 2023. Adcolony ad setup. https://support.adcolony.com/helpdesk/ad
colony-android-sdk/. (2023).

[2] Omer Akgul, Richard Roberts, Moses Namara, Dave Levin, and Michelle L.
Mazurek. 2022. Investigating influencer VPN ads on youtube. In 43rd IEEE

Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26,

2022. IEEE, 876–892. doi: 10.1109/SP46214.2022.9833633.
[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

Androzoo: collecting millions of android apps for the research community. In
Proceedings of the 13th International Conference on Mining Software Repositories

(MSR ’16). ACM, Austin, Texas, 468–471. isbn: 978-1-4503-4186-8. doi: 10.1145
/2901739.2903508.

[4] AppBrain. 2023. Android ad network statistics and market share. https://www
.appbrain.com/stats/libraries/ad-networks. (2023).

[5] AppInChina. 2023. How can you monetize your app or game in china with ads?
https://www.appinchina.co/services/monetization/ad-monetization/. (2023).

[6] Applovin. 2023. Applovin ad setup. https://dash.applovin.com/documentation
/mediation/android/getting-started/integration. (2023).

[7] AppsFlyer. 2023. Appsflyer - appsflyer ad analytics. https://www.appsflyer.com.
(2023).

[8] AppsFlyer. 2023. Attribution fraud. https://www.appsflyer.com/glossary/attrib
ution-fraud/. (2023).

[9] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022.
Dos and don’ts of machine learning in computer security. In 31st USENIX

Security Symposium (USENIX Security 22). USENIX Association, Boston, MA,
(Aug. 2022), 3971–3988. isbn: 978-1-939133-31-1. https://www.usenix.org/conf
erence/usenixsecurity22/presentation/arp.

[10] Amiangshu Bosu, Fang Liu, Danfeng Yao, and GangWang. 2017. Collusive data
leak and more: large-scale threat analysis of inter-app communications. In Pro-

ceedings of the 2017 ACM on Asia Conference on Computer and Communications

Security, 71–85.
[11] Buildfire. 2023. Top mobile ad networks (2023). https://buildfire.com/mobile-a

d-networks/. (2023).
[12] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2019. Droidcat: ef-

fective android malware detection and categorization via app-level profiling.
IEEE Transactions on Information Forensics and Security, 14, 6, 1455–1470. doi:
10.1109/TIFS.2018.2879302.

[13] Chenhong Cao, Yi Gao, Yang Luo, Mingyuan Xia, Wei Dong, Chun Chen, and
Xue Liu. 2021. Adsherlock: efficient and deployable click fraud detection for
mobile applications. IEEE Trans. Mob. Comput., 20, 4, 1285–1297. doi: 10.1109
/TMC.2020.2966991.

[14] Nicolas Christin, Sally S. Yanagihara, and Keisuke Kamataki. 2010. Dissecting
one click frauds. In Proceedings of the 17th ACM Conference on Computer and

Communications Security (CCS ’10). Association for Computing Machinery,
Chicago, Illinois, USA, 15–26. isbn: 9781450302456. doi: 10.1145/1866307.1866
310.

[15] Fraudulent App com.koodroid.chicken. 2022. The configurations downloaded
from the remote server. https://www.product.koodroid.com/download/check.p
hp?pr=chicken&mt=5&new=true. (2022).

[16] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones:
detecting cloned applications on android markets. In Computer Security – ES-

ORICS 2012. Sara Foresti, Moti Yung, and Fabio Martinelli, (Eds.) Springer Berlin
Heidelberg, Berlin, Heidelberg, 37–54. isbn: 978-3-642-33167-1.

[17] Jonathan Crussell, Ryan Stevens, and Hao Chen. 2014. Madfraud: investigating
ad fraud in android applications. In Proceedings of the 12th Annual Interna-

tional Conference on Mobile Systems, Applications, and Services (MobiSys ’14).
Association for Computing Machinery, Bretton Woods, New Hampshire, USA,
123–134. isbn: 9781450327930. doi: 10.1145/2594368.2594391.

[18] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tianming
Liu, Guoai Xu, and Jacques Klein. 2018. Frauddroid: automated ad fraud de-
tection for android apps. In Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering (ESEC/FSE 2018). Association for Computing
Machinery, Lake Buena Vista, FL, USA, 257–268. isbn: 9781450355735. doi:
10.1145/3236024.3236045.

[19] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of android apps. In Proceedings of the 42nd International

Conference on Software Engineering (ICSE ’20), 1–12.
[20] Yingtong Dou, Weijian Li, Zhirong Liu, Zhenhua Dong, Jiebo Luo, and Philip S.

Yu. 2020. Uncovering download fraud activities in mobile app markets. In Pro-

ceedings of the 2019 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (ASONAM ’19). Association for Computing Ma-
chinery, Vancouver, British Columbia, Canada, 671–678. isbn: 9781450368681.
doi: 10.1145/3341161.3345306.

[21] Karim O Elish, Haipeng Cai, Daniel Barton, Danfeng Yao, and Barbara G Ryder.
2018. Identifying mobile inter-app communication risks. IEEE Transactions on

Mobile Computing, 19, 1, 90–102.
[22] Facebook. 2023. Facebook ad setup. https://developers.facebook.com/docs/aud

ience-network/setting-up/ad-setup. (2023).
[23] GOOGLE. 2023. Ad fraud. https://support.google.com/googleplay/android-dev

eloper/answer/9969955?hl=en&ref_topic=9969691&sjid=10118054247325294
537-AP#zippy=%2Cexamples-of-common-violations. (2023).

[24] GOOGLE. 2023. Find your app ids & ad unit ids. https://support.google.com/ad
mob/answer/7356431?hl=en. (2023).

[25] OpenRTB Working Group. 2019. Iab tech lab authorized sellers for apps (app-
ads.txt) version 1.0. iab tech lab. https://iabtechlab.com/wp-content/uploads/2
019/03/appads.txt-v1.0-final-.pdf. (2019).

[26] Huawei. [n. d.] Huawei ad setup. https://developer.huawei.com/consumer/en
/doc/development/HMSCore-Guides/publisher-service-banner-00000010500
66915. ().

[27] IAB. 2023. IAB Tech Lab. https://iabtechlab.com. (2023).
[28] IAB. 2020. The iab europe guide to ad fraud. https://iabeurope.eu/wp-content

/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.pdf. (2020).
[29] Inmobi. 2023. Inmobi ad setup. https://www.inmobi.com/sdk. (2023).
[30] Joongyum Kim, Junghwan Park, and Sooel Son. 2021. The abuser inside apps:

finding the culprit committing mobile ad fraud. In NDSS.
[31] Jeffery Kline, Aaron Cahn, and Paul Barford. 2022. Placement laundering and

the complexities of attribution in online advertising. arXiv preprint arXiv:2208.07310.
[32] Kodular. 2023. Kodular home. https://www.kodular.io/. (2023).
[33] Victor Le Pochat, Laura Edelson, Tom Van Goethem, Wouter Joosen, Damon

McCoy, and Tobias Lauinger. 2022. An audit of facebook’s political ad policy
enforcement. In 31st USENIX Security Symposium (USENIX Security 22), 607–
624.

[34] Hyunjoo Lee, Jiyeon Lee, Daejun Kim, Suman Jana, Insik Shin, and Sooel Son.
2021. AdCube: WebVR ad fraud and practical confinement of Third-Party ads.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
(Aug. 2021), 2543–2560. isbn: 978-1-939133-24-3. https://www.usenix.org/conf
erence/usenixsecurity21/presentation/lee-hyunjoo.

[35] Deqiang Li and Qianmu Li. 2020. Adversarial deep ensemble: evasion attacks
and defenses for malware detection. IEEE Transactions on Information Forensics

and Security, 15, 3886–3900. doi: 10.1109/TIFS.2020.3003571.
[36] Tongxin Li, Xueqiang Wang, Mingming Zha, Kai Chen, XiaoFeng Wang, Luyi

Xing, Xiaolong Bai, Nan Zhang, and Xinhui Han. 2017. Unleashing the walking
dead: understanding cross-app remote infections on mobile webviews. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 829–844.
[37] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: detecting

and characterizing ad fraud in mobile apps. In 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 14). USENIX Association,
Seattle, WA, (Apr. 2014), 57–70. isbn: 978-1-931971-09-6. https://www.usenix.o
rg/conference/nsdi14/technical-sessions/presentation/liu%5C_bin.

[38] Fang Liu, Haipeng Cai, GangWang, Danfeng Yao, Karim O Elish, and Barbara G
Ryder. 2017. Mr-droid: a scalable and prioritized analysis of inter-app commu-
nication risks. in 2017 ieee security and privacy workshops (spw). (2017).

[39] Mintegral. 2023. Mintegral ad setup. https://www.mintegral.com/. (2023).
[40] MRC. 2020. Invalid traffic detection and filtration standards addendum. https:

//mediaratingcouncil.org/sites/default/files/Standards/IVT%20Addendum%2
0Update%20062520.pdf. (2020).

[41] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko, Saikat Guha, Damon
McCoy, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. 2014. Charac-
terizing large-scale click fraud in zeroaccess. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’14). As-
sociation for Computing Machinery, Scottsdale, Arizona, USA, 141–152. isbn:
9781450329576. doi: 10.1145/2660267.2660369.

[42] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing properties of adversarial ml attacks in the problem space. In
2020 IEEE Symposium on Security and Privacy (SP), 1332–1349. doi: 10.1109/SP4
0000.2020.00073.

[43] Pixalate. 2023. Blocking using data feeds. https://www.pixalate.com/knowledg
ebase/high-risk-app-lists. (2023).

[44] ProGuard. 2023. How it works? https://www.guardsquare.com/manual/home.
(2023).

[45] QIMAI. 2023. Qimai. https://www.qimai.cn/. (2023).
[46] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Mak-

ing malory behave maliciously: targeted fuzzing of android execution en-
vironments. In Proceedings of the 39th International Conference on Software

Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard, (Eds.) IEEE / ACM, 300–311.
doi: 10.1109/ICSE.2017.35.

[47] ronsource. 2023. Ronsource ad setup. https://developers.is.com/ironsource-mo
bile/android/sdk-change-log/. (2023).

https://support.adcolony.com/helpdesk/adcolony-android-sdk/
https://support.adcolony.com/helpdesk/adcolony-android-sdk/
https://doi.org/10.1109/SP46214.2022.9833633
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appinchina.co/services/monetization/ad-monetization/
https://dash.applovin.com/documentation/mediation/android/getting-started/integration
https://dash.applovin.com/documentation/mediation/android/getting-started/integration
https://www.appsflyer.com
https://www.appsflyer.com/glossary/attribution-fraud/
https://www.appsflyer.com/glossary/attribution-fraud/
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://buildfire.com/mobile-ad-networks/
https://buildfire.com/mobile-ad-networks/
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.1109/TMC.2020.2966991
https://doi.org/10.1109/TMC.2020.2966991
https://doi.org/10.1145/1866307.1866310
https://doi.org/10.1145/1866307.1866310
https://www.product.koodroid.com/download/check.php?pr=chicken&mt=5&new=true
https://www.product.koodroid.com/download/check.php?pr=chicken&mt=5&new=true
https://doi.org/10.1145/2594368.2594391
https://doi.org/10.1145/3236024.3236045
https://doi.org/10.1145/3341161.3345306
https://developers.facebook.com/docs/audience-network/setting-up/ad-setup
https://developers.facebook.com/docs/audience-network/setting-up/ad-setup
https://support.google.com/googleplay/android-developer/answer/9969955?hl=en&ref_topic=9969691&sjid=10118054247325294537-AP#zippy=%2Cexamples-of-common-violations
https://support.google.com/googleplay/android-developer/answer/9969955?hl=en&ref_topic=9969691&sjid=10118054247325294537-AP#zippy=%2Cexamples-of-common-violations
https://support.google.com/googleplay/android-developer/answer/9969955?hl=en&ref_topic=9969691&sjid=10118054247325294537-AP#zippy=%2Cexamples-of-common-violations
https://support.google.com/admob/answer/7356431?hl=en
https://support.google.com/admob/answer/7356431?hl=en
https://iabtechlab.com/wp-content/uploads/2019/03/appads.txt-v1.0-final-.pdf
https://iabtechlab.com/wp-content/uploads/2019/03/appads.txt-v1.0-final-.pdf
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/publisher-service-banner-0000001050066915
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/publisher-service-banner-0000001050066915
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/publisher-service-banner-0000001050066915
https://iabtechlab.com
https://iabeurope.eu/wp-content/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.pdf
https://iabeurope.eu/wp-content/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.pdf
https://www.inmobi.com/sdk
https://www.kodular.io/
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-hyunjoo
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-hyunjoo
https://doi.org/10.1109/TIFS.2020.3003571
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu%5C_bin
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu%5C_bin
https://www.mintegral.com/
https://mediaratingcouncil.org/sites/default/files/Standards/IVT%20Addendum%20Update%20062520.pdf
https://mediaratingcouncil.org/sites/default/files/Standards/IVT%20Addendum%20Update%20062520.pdf
https://mediaratingcouncil.org/sites/default/files/Standards/IVT%20Addendum%20Update%20062520.pdf
https://doi.org/10.1145/2660267.2660369
https://doi.org/10.1109/SP40000.2020.00073
https://doi.org/10.1109/SP40000.2020.00073
https://www.pixalate.com/knowledgebase/high-risk-app-lists
https://www.pixalate.com/knowledgebase/high-risk-app-lists
https://www.guardsquare.com/manual/home
https://www.qimai.cn/
https://doi.org/10.1109/ICSE.2017.35
https://developers.is.com/ironsource-mobile/android/sdk-change-log/
https://developers.is.com/ironsource-mobile/android/sdk-change-log/

Unveiling Collusion-Based Ad Attribution Laundering Fraud: Detection, Analysis, and Security Implications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[48] Brett Stone-Gross, Ryan Stevens, Apostolis Zarras, Richard Kemmerer, Chris
Kruegel, and Giovanni Vigna. 2011. Understanding fraudulent activities in
online ad exchanges. In Proceedings of the 2011 ACM SIGCOMM Conference

on Internet Measurement Conference (IMC ’11). Association for Computing
Machinery, Berlin, Germany, 279–294. isbn: 9781450310130. doi: 10.1145/2068
816.2068843.

[49] Suibin Sun, Le Yu, Xiaokuan Zhang, Minhui Xue, Ren Zhou, Haojin Zhu,
Shuang Hao, and Xiaodong Lin. 2021. Understanding and detecting mobile ad
fraud through the lens of invalid traffic. In Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’21). Association
for Computing Machinery, Virtual Event, Republic of Korea, 287–303. isbn:
9781450384544. doi: 10.1145/3460120.3484547.

[50] Technavio. 2023. Advertising services market size to grow by usd 188.92 bil-
lion from 2021 to 2026, driven by the growth in in-app advertising - technavio.
https://www.prnewswire.com/news-releases/advertising-services-market-size-
to-grow-by-usd-188-92-billion-from-2021-to-2026–driven-by-the-growth-in-in-
app-advertising—technavio-301788330.html. (2023).

[51] 2023. UI/Application Exerciser Monkey. en. https://developer.android.com/stu
dio/test/other-testing-tools/monkey. (2023). Retrieved Apr. 8, 2023 from.

[52] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
and Vijay Sundaresan. 1999. Soot - a java bytecode optimization framework.
In Proceedings of the 1999 conference of the Centre for Advanced Studies on

Collaborative Research, November 8-11, 1999, Mississauga, Ontario, Canada.
Stephen A. MacKay and J. Howard Johnson, (Eds.) IBM, 13. https://dl.acm.org
/citation.cfm?id=782008.

[53] Yash Vekaria, Rishab Nithyanand, and Zubair Shafiq. 2022. The inventory is
dark and full of misinformation: understanding the abuse of ad inventory
pooling in the ad-tech supply chain. arXiv preprint arXiv:2210.06654.

[54] VirusTotal. 2020. Virustotal. https://www.virustotal.com/gui/. (2020).
[55] Robert J. Walls, Eric D. Kilmer, Nathaniel Lageman, and Patrick D. McDaniel.

2015. Measuring the impact and perception of acceptable advertisements. In
Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,

Japan, October 28-30, 2015. Kenjiro Cho, Kensuke Fukuda, Vivek S. Pai, and
Neil Spring, (Eds.) ACM, 107–120. doi: 10.1145/2815675.2815703.

[56] Bin Wang, Chao Yang, and Jianfeng Ma. 2023. Iafdroid: demystifying collusion
attacks in android ecosystem via precise inter-app analysis. IEEE Transactions

on Information Forensics and Security.
[57] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: a

precise and general inter-component data flow analysis framework for security
vetting of android apps. ACM Trans. Priv. Secur., 21, 3, Article 14, 32 pages. doi:
10.1145/3183575.

[58] Michelle Y. Wong and David Lie. 2016. IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware. en. In Proceedings 2016 Network

and Distributed System Security Symposium. Internet Society, San Diego, CA.
isbn: 9781891562419. doi: 10.14722/ndss.2016.23118.

[59] Wong, Michelle Y. and Lie, David. 2022. Driving execution of target paths in
android applications with (a) car. In Proceedings of the 2022 ACM on Asia Con-

ference on Computer and Communications Security (ASIA CCS ’22). Association
for Computing Machinery, Nagasaki, Japan, 888–902. isbn: 9781450391405. doi:
10.1145/3488932.3497765.

[60] Chao Xu, Zhentan Feng, Yizheng Chen, Minghua Wang, and Tao Wei. 2018.
Featnet: large-scale fraud device detection by network representation learning
with rich features. In Proceedings of the 11th ACM Workshop on Artificial Intelli-

gence and Security (AISec ’18). Association for Computing Machinery, Toronto,
Canada, 57–63. isbn: 9781450360043. doi: 10.1145/3270101.3270109.

[61] Lei Xue, Hao Zhou, Xiapu Luo, Yajin Zhou, Yang Shi, Guofei Gu, Fengwei
Zhang, and Man Ho Au. 2021. Happer: unpacking android apps via a hardware-
assisted approach. In 42nd IEEE Symposium on Security and Privacy, SP 2021,

San Francisco, CA, USA, 24-27 May 2021. IEEE, 1641–1658. doi: 10.1109/SP4000
1.2021.00105.

[62] Tianjun Yao, Qing Li, Shangsong Liang, and Yadong Zhu. 2020. Botspot: a
hybrid learning framework to uncover bot install fraud in mobile advertising.
In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management (CIKM ’20). Association for Computing Machinery,
Virtual Event, Ireland, 2901–2908. isbn: 9781450368599. doi: 10.1145/3340531.3
412690.

[63] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,
Christopher Kruegel, and Giovanni Vigna. 2014. The dark alleys of madison
avenue: understanding malicious advertisements. In Proceedings of the 2014

Conference on Internet Measurement Conference (IMC ’14). Association for

Computing Machinery, Vancouver, BC, Canada, 373–380. isbn: 9781450332132.
doi: 10.1145/2663716.2663719.

[64] Eric Zeng, Tadayoshi Kohno, and Franziska Roesner. 2021. What makes a “bad”
ad? user perceptions of problematic online advertising. In Proceedings of the

2021 CHI Conference on Human Factors in Computing Systems (CHI ’21) Article
361. Association for Computing Machinery, Yokohama, Japan, 24 pages. isbn:
9781450380966. doi: 10.1145/3411764.3445459.

[65] Eric Zeng, Rachel McAmis, Tadayoshi Kohno, and Franziska Roesner. 2022.
What factors affect targeting and bids in online advertising? a field measure-
ment study. In Proceedings of the 22nd ACM Internet Measurement Conference

(IMC ’22). Association for Computing Machinery, Nice, France, 210–229. isbn:
9781450392594. doi: 10.1145/3517745.3561460.

[66] Eric Zeng, Miranda Wei, Theo Gregersen, Tadayoshi Kohno, and Franziska
Roesner. 2021. Polls, clickbait, and commemorative $2 bills: problematic politi-
cal advertising on news and media websites around the 2020 u.s. elections. In
Proceedings of the 21st ACM Internet Measurement Conference (IMC ’21). Associ-
ation for Computing Machinery, Virtual Event, 507–525. isbn: 9781450391290.
doi: 10.1145/3487552.3487850.

[67] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiaoyong Zhou, and XiaoFeng
Wang. 2015. Leave me alone: app-level protection against runtime information
gathering on android. In 2015 IEEE Symposium on Security and Privacy. IEEE,
915–930.

[68] Tong Zhu, Yan Meng, Haotian Hu, Xiaokuan Zhang, Minhui Xue, and Haojin
Zhu. 2021. Dissecting click fraud autonomy in the wild. In Proceedings of the

2021 ACM SIGSAC Conference on Computer and Communications Security (CCS
’21). Association for Computing Machinery, Virtual Event, Republic of Korea,
271–286. isbn: 9781450384544. doi: 10.1145/3460120.3484546.

[69] Yadong Zhu, Xiliang Wang, Qing Li, Tianjun Yao, and Shangsong Liang. 2021.
Botspot++: a hierarchical deep ensemble model for bots install fraud detection
in mobile advertising. ACM Trans. Inf. Syst., 40, 3, Article 50, 28 pages. doi:
10.1145/3476107.

A AUTHORITATIVE GUIDELINES ON ALF
There are some industry authoritative guidelines about ALF :
(1) The Media Rating Council (MRC), which oversees audits for
audience measurement services that media buyers and sellers in
the advertising community rely on, explicitly lists the traffic gen-
erated by ALF as sophisticated invalid traffic[40]: “... The second
category, herein referred to as “Sophisticated Invalid Traffic” or SIVT,

consists of more difficult to detect situations that require advanced

analytics, multi-point corroboration/coordination, significant human

intervention, etc., to analyze and identify. Key examples are: ... App

misrepresentation: App ID spoofing ...”. (2) The Interactive Advertis-
ing Bureau (IAB), which leads the interactive advertising association
and represents companies responsible for selling over 75% of online
advertising in the United States, regards ad content generated by
ALF as falsely represented content[28]: “ The aim of advertising is to

deliver the right message to the right person in the right environment.

Fraudsters use various techniques to compromise all of these three

core values across various platforms and devices, resulting in wasted

advertiser spend and damaged reputations for susceptible publishers.

Below are the top 10 most common types of fraud detected. ... APP

NAME SPOOFING: Similar to domain spoofing in display, apps can

submit a false app identifier to the bidding platform. This interferes

with detection of apps utilising background services to load ads, as

well as brand safety and contextual targeting ... ”. (3) Google has
also stated that ALF is a typical example of common violation[23]:
“Examples of common violations: ... False representations of the ad

inventory by an app, for example ... an app that misrepresents the

package name that is being monetized ...”.

https://doi.org/10.1145/2068816.2068843
https://doi.org/10.1145/2068816.2068843
https://doi.org/10.1145/3460120.3484547
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://dl.acm.org/citation.cfm?id=782008
https://dl.acm.org/citation.cfm?id=782008
https://www.virustotal.com/gui/
https://doi.org/10.1145/2815675.2815703
https://doi.org/10.1145/3183575
https://doi.org/10.14722/ndss.2016.23118
https://doi.org/10.1145/3488932.3497765
https://doi.org/10.1145/3270101.3270109
https://doi.org/10.1109/SP40001.2021.00105
https://doi.org/10.1109/SP40001.2021.00105
https://doi.org/10.1145/3340531.3412690
https://doi.org/10.1145/3340531.3412690
https://doi.org/10.1145/2663716.2663719
https://doi.org/10.1145/3411764.3445459
https://doi.org/10.1145/3517745.3561460
https://doi.org/10.1145/3487552.3487850
https://doi.org/10.1145/3460120.3484546
https://doi.org/10.1145/3476107

	Abstract
	1 Introduction
	2 Background on Real-Time Bidding
	3 Overview
	3.1 Threat Model
	3.2 Challenges and Solutions

	4 AlfScan
	4.1 Design
	4.2 Implementation

	5 Evaluation
	5.1 Data Collection
	5.2 Performance of AlfScan

	6 Large-Scale Analysis
	6.1 Characterizing ALF
	6.2 Patterns in Fraudulent Clusters
	6.3 Reliability Issues of Third-Party App Development Frameworks

	7 Case Studies
	8 Discussion
	8.1 Limitations of AlfScan
	8.2 Responsible Disclosure

	9 Related Work
	10 Conclusion
	A Authoritative Guidelines on ALF

