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Abstract

Virtual Reality (VR) technology is rapidly growing in recent years.
VR devices such as Meta Quest 3 utilize numerous sensors to col-
lect users’ data to provide an immersive experience. Due to the
extensive data collection and the immersive nature, the security
of VR devices is paramount. Leading VR devices often adopt and
customize Android systems, which makes them susceptible to both
Android-based vulnerabilities and new issues introduced by VR-
specific customizations (e.g., system services to support continuous
head and hand tracking). While prior work has extensively exam-
ined the security properties of the Android software stack, how
these security properties hold for VR systems remains unexplored.
In this paper, we present the first comprehensive security analysis
of VR firmware. We collect over 300 versions of VR firmware from
two major vendors, Quest and Pico, and perform a longitudinal
analysis across the kernel layer, the system binary and library
layer, and the application layer. We have identified several security
issues in these VR firmware, including missing kernel-level security
features, insufficient binary hardening, inconsistent permission
enforcement, and inadequate SELinux policy enforcement. Based
on our findings, we synthesize recommendations for VR vendors to
improve security and trust for VR devices. This paper will act as an
important security resource for VR developers, users, and vendors,
and will also direct future advancements in secure VR ecosystem.
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1 Introduction

Virtual Reality (VR) technology is a rapidly growing trend with
a projected market value of $22 billion in 2025 [90]. One of the
industry’s leaders, Meta (formerly known as Facebook), has sold
approximately 20 million VR headsets as of March 2023 [82, 98]
and invested billions in its VR venture. Apple recently launched
Vision Pro [11], a new mixed reality device, and Google is expected
to release the AndroidXR operating system in 2025 [42].

Despite its widespread adoption, VR technology introduces criti-
cal security and privacy challenges. The extensive collection and
processing of personal data by VR devices, including biometric
identifiers, behavioral patterns, and environmental information,
raises significant privacy concerns [54, 97, 102]. The compromise
of such sensitive data could lead to severe consequences, including
identity theft, unauthorized system access, and invasion of personal
privacy. Beyond data protection, VR systems present unique safety
challenges [34, 51] due to their immersive nature, which completely
obscures users’ perception of their physical surroundings [16]. To
mitigate potential physical harm, VR devices implement runtime
safeguards, such as virtual boundaries [68], to prevent accidents
like dangerous falls and collisions. Yet, these safety mechanisms
are mediated by the VR device’s operating system and could be
rendered ineffective if the software stack is compromised, leading
to far-reaching implications for end-user well-being.

These risks underscore the importance of robust security in the
software that powers VR platforms. Leading VR platforms such
as Meta Quest and Pico have strategically adopted customized
Android-based operating systems, leveraging Android’s robust
open-source architecture as a foundation. These manufacturers
undertake sophisticated customization processes to seamlessly inte-
grate proprietary system software with the base operating system,
resulting in device-specific firmware that powers their cutting-
edge products. While the core Android framework maintains its
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open-source nature, the customized firmware implementations re-
main proprietary and closed-source, creating significant barriers to
transparency and independent security assessment.

Operating as critical downstream components in the software
supply chain, these modified firmware systems face a dual security
challenge: they inherit Android’s inherent vulnerabilities while
introducing novel security considerations through extensive cus-
tomization. The Android Security Bulletin [39] consistently re-
veals numerous critical security vulnerabilities requiring imme-
diate patching, yet downstream device manufacturers face sub-
stantial challenges in implementing these crucial updates in a
timely manner [109, 112]. This concern is further amplified by
extensive research demonstrating that vendor-specific Android
customizations frequently introduce additional security vulnera-
bilities [4, 28, 53, 60, 80, 100, 104, 113]. These risks are significantly
amplified in VR systems, where firmware must support continuous,
high-bandwidth interaction with complex sensors like eye track-
ers, and depth sensors as well as scene and spatial understanding
pipelines. Supporting such capabilities often necessitates architec-
tural changes to the Android-based firmware, which may introduce
novel vulnerabilities.

While prior security research on VR systems [5, 50, 55, 59, 62,
63, 71-73, 76, 78, 79, 87, 91, 94, 111] has primarily focused on

application-level threats and user privacy concerns, such deanonymiza-

tion via sensor data analysis, behavior profiling, and keystroke
inference through side-channel attacks, the security of underlying
VR firmware powering these systems remains largely unexplored.
As VR technology rapidly transitions from an emerging technology
to mainstream adoption, there is a critical need to systematically
investigate potential security vulnerabilities in VR firmware. This
research gap is particularly concerning given VR’s expanding role in
sensitive domains like military training, healthcare, and enterprise
environments, where firmware vulnerabilities could potentially
compromise not only individual user safety but also organizational
security.

In this paper, we seek to address this research gap by analyzing
how VR vendors adopt security measures to protect VR firmware.
Android has evolved a rich set of protections, including kernel-level
mitigations, binary hardening, access control policies and SELinux-
based isolation [7, 8, 64, 88] to protect against various vulnerabilities.
However, it is unclear whether these defenses are preserved, de-
graded, or bypassed in VR firmware, where performance demands
and proprietary customizations are intense.

Challenges. Analyzing the firmware security for VR platforms,
however, presents several challenges. First, unlike Android smart-
phones, where root access is readily available, VR devices are de-
signed to be tamper-resistant and do not support root access. Sec-
ond, firmware security-related configurations, such as kernel con-
figurations, SEPolicies, or permission settings, are spread across
multiple image layers and file paths in VR firmware. Lastly, VR plat-
forms lack standardized firmware structure. For instance, Meta uses
payload.bin, while Pico uses Brotli-compressed partitions; some
devices consolidate firmware customizations in system. img, others
split them across system.img, vendor.img, and odm. img. This vari-
ability creates a fragmented firmware landscape where firmware
analysis tools must be adapted for each target.
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To address these challenges and fill the current research gap, we
present the first comprehensive, longitudinal investigation into VR
firmware security. Our study employs a systematic approach to
analyze VR firmware security across multiple architectural layers
(kernel layer, binary layer, and application layer) through rigor-
ous differential analysis against the Android Open Source Project
(AOSP) baseline in relevant cases. We have assembled an extensive
dataset comprising over 300 firmware versions from two leading VR
manufacturers, Meta and Pico, enabling us to conduct a thorough
longitudinal analysis. From a high-level, we unzip each firmware,
and extract image files that are important for our study; then, we
mount those images locally to extract necessary files (e.g., kernel
binaries, preinstalled apps), and perform analysis.

Findings. Our analysis of VR firmware reveals systemic security
weaknesses across multiple layers of the software stack. At the
kernel level, VR devices frequently suffer from misconfigurations
and delayed adoption of up-to-date Linux versions, leading to priv-
ilege escalation attacks. Similarly, binary hardening is inconsis-
tently applied, with key protections like Control Flow Integrity
(CFI) and Fortify Source often absent. At the application level, im-
proper security flag usage and flawed permission handling expose
VR devices to risks such as unauthorized data backups, man-in-the-
middle (MITM) attacks, and permission leaks. Moreover, vendors
frequently modify SEPolicies and leave system properties exposed
to untrusted apps. Collectively, these findings suggest that despite

a growing market presence, VR devices lag behind in adopting

standard mobile security practices.

Contributions. This paper makes the following contributions:

e We present the first longitudinal, multi-layer investigation into
VR firmware security. Our work complements prior studies on
vendor customizations and firmware vulnerabilities for Android
and IoT devices, but we focus on VR, where distinct risks stem
from continuous real-time sensor input, immersive runtime de-
pendencies, and proprietary firmware design.

o We develop a set of tools to extract and analyze VR firmware
across multiple vendors and hardware versions, which are de-
signed for fragmented and vendor-specific VR firmware formats.
The tools will be open-sourced to facilitate future research.

o We present several important findings regarding the security of
VR firmware, including missing kernel-level security features,
insufficient binary hardening, inconsistent permission enforce-
ment, and inadequate SELinux policy enforcement. Based on
our findings, we synthesize recommendations for VR vendors to
improve security and trust for VR devices.

Ethics consideration. The firmware dataset used in this paper
was collected from public resources. We have disclosed our findings
with Meta and Pico teams, and their responses are discussed in §8.

Artifacts. Our code and data are available at: https://github.com/
SECSAT-LAB-GMU/VR-Firmware.

2 Background
2.1 VR Device Types

Virtual Reality (VR) offers immersive 3D experiences via advanced
head-mounted displays (HMDs) [86]. The combination of market
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Fig. 1: VR Firmware

opportunities and technology innovation has driven significant
investments by major tech companies in proprietary VR platforms
[12]. VR systems are categorized into four types based on architec-
ture: (1) Basic Optical VR [40] (e.g., Google Cardboard), using pas-
sive optical elements like precision convex lenses; (2) Smartphone-
tethered VR [29] (e.g., Samsung Gear VR), using mobile devices
with tracking sensors; (3) PC-tethered VR [17] (e.g., Valve Index),
utilizing high-performance PCs for graphics and physics; and (4)
Standalone VR [70] (e.g., Meta Quest 3), combining processing units,
displays, and sensors into a self-contained platform. This paper fo-
cuses on standalone VR devices as the leading market segment and
complete computational systems with comprehensive firmware.
We also only focus on Android-based devices such as Meta Quest.

2.2 VR Firmware

Most VR devices run customized Android firmware containing
essential components, policies, and configurations for proper func-
tioning. This firmware includes executables, libraries, pre-installed
apps, and scripts for system setup. All use at least Android 10,
except Oculus Quest, which started with Android 7.1.1 and later
upgraded to Android 10. Manufacturers enhance firmware with
VR-specific binaries, services, and applications, adjusting function-
alities. Customizations include integrating kernel components like
VR drivers and refining security and performance for immersive
experiences. At a high level, VR firmware follows the following
structure [9] (shown in Fig. 1), with vendors frequently modifying
these components to meet their specific needs.

Kernel Layer. The kernel serves as the foundation of the VR de-
vice, providing essential system functionalities. The VR kernel layer
consists of the core Android kernel with VR-specific modifications.
These include VR-specific drivers, such as display drivers, GPU dri-
vers, and sensor drivers, which ensure performance and responsive-
ness. Within the firmware, the kernel binary is stored in boot . img.
System Binaries and Libraries Layer. Binaries and libraries
within the firmware are essential system components that provide
pre-compiled functions and services required by both the operating
system and applications. These components are crucial for system
stability and performance. However, they are also a common source
of critical security vulnerabilities [80], as many are developed us-
ing unsafe programming languages like C and C++, which can
introduce memory-related vulnerabilities.

Framework Layer. The Android framework acts as an interme-
diary layer between applications and the underlying system. It
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provides APIs that allow apps to interact with hardware sensors,
networking, graphics, and user interface components. The frame-
work translates app requests into system calls, enabling communi-
cation with binaries, libraries, and the Linux kernel.

Application Layer. Apps interact with the Android framework
to access system resources like sensors, network, and storage. The
apps include system apps, pre-installed apps, and third-party apps.
System apps are essential applications that provide system-level
functionalities, while pre-installed apps are the apps provided by
the vendors.

2.3 Android Customization

Developing an Android-based system involves a multi-stage pro-
cess that begins with the strategic selection of an Android version
as the foundational base image. This critical decision determines
the SDK level and technological capabilities available to the sys-
tem. Following version selection, manufacturers systematically fork
the corresponding branch from the Android Open Source Project
(AOSP) repositories to establish their development baseline. The
customization phase involves comprehensive system-wide modi-
fications that span both user-space and kernel-space components.
Vendors integrate proprietary binaries, services, and core system
modifications to achieve their desired functionality. At the kernel
level, they implement essential drivers for custom peripherals and
make strategic adjustments to other components (e.g., security poli-
cies and initialization scripts) to optimize system performance and
security. For VR devices specifically, the extensive array of spe-
cialized sensors and peripherals requires substantial kernel-level
customization. This includes implementing custom device drivers
and developing kernel support infrastructure to enable seamless
interaction between userspace APIs and VR-specific hardware com-
ponents (e.g., eye-tracking sensors).

2.4 Android Compliance Check

Android enforces a strict compliance framework to ensure device
compatibility and security. Central to this is the Android Compati-
bility Definition Document (CDD) [10], which outlines the techni-
cal specifications for Android-compatible devices. For each release,
Google provides a version-specific CDD integrating SDK API doc-
umentation and implementation guidelines to ensure consistency.
Manufacturers must pass a detailed validation process checking
both AOSP compatibility and security to gain certification. The
Compeatibility Test Suite (CTS) [43] is the main assessment tool,
testing adherence to CDD standards, ensuring devices meet An-
droid’s compatibility and security requirements.

The CDD framework plays a crucial role in balancing innova-
tion with standardization by establishing clear boundaries for ven-
dor customization. While manufacturers retain the flexibility to
enhance and differentiate their Android-based products through
custom modifications, these adaptations must conform to CDD
guidelines to preserve compatibility. While Android-based VR de-
vices are not mandated to obtain CDD certification, adherence
to these established standards provides a critical framework for
evaluating device security posture. For example, the CDD speci-
fications outline essential kernel-level security requirements for
specific Android versions, establishing baseline protections that are
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Device  Version Size gve. Bm'ary Ave. App Date Range  Android version

er Version  Per Version
Quest 54  100GB 1956 103 June 2019 - December 2023  Android 7.1.1, 10
Quest 2 151 350GB 3049 117  September 2020 - December 2024 Android 10, 12
Quest 3 37  150GB 3351 131  September 2023 - December 2024 Android 12
Quest Pro 79  170GB 3290 127 March 2023 - December 2024 Android 10, 12
Pico Neo 3 4 14GB 4132 181 May 2021 - December 2024 Android 10
Pico 4 4 14GB 4350 176 October 2022 - December 2024 Android 10

Table 1: VR Firmware Dataset

fundamental to maintaining robust security across VR systems. As
there is no such standard for VR devices yet, the requirements from
Android CDD serve as valuable reference points for assessing the
security maturity of VR implementations.

2.5 Android Security Features

Modern Android systems implement a range of security mecha-
nisms across multiple layers of the software stack. At the kernel
level, Android has implemented defenses like kernel page table
isolation and KASLR to protect the kernel space. Similarly, Android
enforces binary hardening techniques [80, 105] on system binaries
such as stack canaries, position-independent executables (PIE), and
full RELRO to mitigate various security vulnerabilities. Moreover,
Android relies on SELinux as a mandatory access control framework
to confine system processes and limit privilege escalation through
fine-grained policies. These mechanisms form the foundation of
Android’s defense-in-depth strategy. Although modern VR devices
rely on customized Android versions, they often deviate from the
standard Android release process and may include vendor-specific
modifications, custom builds, or legacy components. In this work,
we focus on understanding whether these well-established security
practices are faithfully translated into VR firmware across device
generations or whether gaps exist that could expose VR devices
to additional security risks. We studied existing Android firmware
analysis works [28, 30, 32, 33, 46-48, 64, 80, 92] and identified criti-
cal security features in Android, which motivates our study.

3 Overview

In this section, we first present the research questions guiding
our study. We then describe the VR firmware dataset we curated.
Finally, we detail the our analysis pipeline used to process and
extract relevant information from the firmware.

3.1 Research Goals

As VR platforms continue to grow in complexity and adoption, the
firmware powering these devices becomes a critical component in
VR systems’ security and privacy guarantees. Unlike traditional mo-
bile platforms, VR firmware vulnerabilities can compromise both
privacy and users’ physical safety. Misplaced Guardian boundaries,
camera spoofing, or corrupted sensor data can cause disorientation
and injury. Moreover, VR devices process continuous sensor data
(e.g., eye/face/body trackers), making kernel-level misconfigura-
tions and weak SEPolicy rules particularly dangerous. However, the
security of VR firmware and the implications of its design decisions
over time remain largely unexplored. To systematically analyze its
security posture, we focus on the following research questions to

understand the security of different layers of the firmware stack

(Fig. 1):

o RQ1: What kernel-level security features are missing or incon-
sistently deployed in VR firmware?

e RQ2: Are the binaries in VR firmware properly hardened with
appropriate defenses?

e RQ3: What privileges and security controls are applied to pre-
installed applications in VR firmware?

e RQ4: How are SELinux policies enforced across firmware ver-
sions and device generations?

We perform a longitudinal analysis across firmware updates and
device generations to identify regressions or improvements, and
better understand how vendors evolve their security measures for
VR devices.

3.2 VR Firmware Dataset

Our study focuses on standalone VR headsets running Android-
based firmware. We compiled a list of major standalone VR vendors
and excluded those without publicly available firmware (e.g., HTC-
Vive and Varjo). To conduct our longitudinal analysis, we curated a
comprehensive dataset of firmware images from two leading VR
device vendors: Meta and Pico. Meta and Pico were selected because
their firmware is available, and the two vendors represent over 82%
of the VR headset market [18], making them highly representative
of the consumer VR landscape. Specifically, we target the following
standalone VR devices: Meta Quest 1, Quest 2, Quest 3/3S, Quest
Pro, Pico Neo 3, and Pico 4.

To collect firmware images for these devices, we searched vari-
ous online sources, including forums, developer communities and
archival websites[2, 13, 24, 31, 35, 61, 66]. For Meta Quest devices,
we identified a repository [31] that hosts a comprehensive archive
of firmware updates across all Quest product lines. For Pico devices,
we collected firmware directly from official update channels [61]
and manually retrieved older firmware versions using the Wayback
Machine [13], which allowed us to access historical download links
that were no longer publicly listed. We excluded devices that have
been available only for a limited period. For instance, Meta Quest 3S
was released in October 2024 and the firmwares are only available
for a two month duration (Oct - Dec 2024) at the time of our data
collection.

Our final dataset includes over 300 distinct firmware versions
across the six VR devices. The firmware images span a date range
from March 2019 to December 2024, and total more than 700GB
in size. Table 1 summarizes the number of versions per device,
their average binary and app counts, and the underlying Android
base versions. We observed a clear progression in the Android
base versions across different VR device generations. The original
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Fig. 2: High-level Approach

Quest device initially used Android 7.1.1 as its foundation before
transitioning to Android 10 in subsequent updates. Quest 2 and
Quest Pro devices were developed on Android 10 and later received
major version updates to Android 12. The Quest 3 was developed
on Android 12, representing the most up-to-date Android adoption
in Quest devices. In contrast, Pico has maintained Android 10 as the
base operating system across their device lineup, demonstrating
a more conservative approach to Android version adoption. This
longitudinal dataset provides a strong foundation for analyzing
security practices across both vendors and multiple generations of
Android-based VR devices.

3.3 Firmware Image Analysis

Fig. 2 illustrates our high-level workflow used to extract, process,
and analyze artifacts from each VR firmware image. Our goal is
to retrieve kernel binaries, user-space executables, pre-installed
applications, and SELinux policies from each image to support the
security analyses defined by our research questions.

We analyze each firmware image via a three-phase approach.
First, we decompress the firmware packages. VR firmware images
are typically distributed as .zip archives. We use standard tools
such as unzip to extract the contained payloads (i.e., payload.bin
and Brotli compressed files). Next, we extract the relevant system
partition images. For Meta firmware, we use a payload extraction
tool [89] to extract key image files, including boot . img, system. img,
vendor.img, and odm.img. For Pico firmware, we use brotli [6] to
retrive the decompressed Brotli (.br) files which contain these
partition images. Lastly, we mount these images to extract the rel-
evant artifacts for our analysis using standard Linux loop device
and extraction tools (e.g., boot.img editor [36]). Specifically, we
extract the kernel binaries from boot.img for RQ1 and extract na-
tive binaries, pre-installed applications, and SELinux policies from
system.img, vendor.img, and odm.img one by one for answering
RQ2, RQ3 and RQ4. To identify the Android version, we parse the
build.prop configuration file located in the mounted system par-
tition. For Meta devices, we use the ro.build.id field, while for
Pico devices we rely on ro.system.build.version.release and
ro.system.build.version.sdk. Table 8 in Appendix of [85] sum-
marizes the key paths and properties we use to extract security-
relevant data from each firmware image. This pipeline enables
scalable, automated analysis across hundreds of firmware versions
and serves as the foundation for the longitudinal firmware analysis
presented in the remainder of the paper.
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4 RQ1: Kernel Misconfiguration

4.1 Motivation

The Android Compatibility Definition Document (CDD) [10] estab-
lishes critical security requirements for kernel compilation, mandat-
ing specific security features to mitigate potential vulnerabilities.
Non-compliance with these requirements can lead to severe secu-
rity implications, as demonstrated by CVE-2018-9568 [19], which
enabled privilege escalation attacks on Android systems through
kernel misconfiguration. Given that VR devices utilize customized
Android kernels, they inherit similar vulnerability patterns. As one
concrete example, CVE-2018-9568 was successfully exploited on
Oculus Quest devices [38] for privilege escalation, illustrating how
security weaknesses can propagate across the Android ecosystem
to VR platforms.

In response to such vulnerabilities, the Android Open Source
Project (AOSP) has implemented robust kernel-level security miti-
gations [41], such as Kernel Address Space Layout Randomization
(KASLR) and Privileged Access Never (PAN). However, prior re-
search works [112] have shown that nearly half of the CVEs are
patched on OEM devices roughly 200 days or more after the initial
patch is publicly committed in the upstream. This significant patch
deployment latency, combined with VR devices’ shared kernel ar-
chitecture with Android, underscores the critical importance of
systematic kernel security misconfiguration analysis in VR plat-
forms. Such analysis is essential to ensure VR devices maintain
parity with Android’s evolving security standards.

4.2 Methodology

For identifying the mitigations present in the kernel, we need to
extract the kernel configuration file (.config) from the kernel bi-
nary. To do so, we used the extract-ikconfig script [37]. Unlike
existing studies that face difficulties in extracting kernel configu-
rations [80, 105], we were able to extract all the .config files from
the kernel binaries because all VR firmware were compiled with the
CONFIG_IKCONFIG flag [3]; This config flag is a kernel configuration
option in the Linux kernel that allows the kernel to include its own
configuration file as part of the compiled kernel image, and it has
been required since Android 8.0. As most of the VR firmware in our
dataset uses an Android version higher than 8.0 and the ones that
have used Android 7.1.1 (from Quest) also have this flag enabled,
we were able to extract kernel configurations successfully from all
the kernels we collected.

To examine kernel misconfigurations, we first manually reviewed
the Android CDD and extracted the relevant kernel-level security
mitigations. The CDD provides a set of mandatory kernel mitiga-
tions, which focus on addressing only a subset of security issues.
However, these categories do not fully encompass the range of
potential vulnerabilities that could compromise system security;
therefore, we have examined prior works [64] and the additional
mitigations that increase the security posture of the kernel. These
mitigations and associated flags are present in Table 2. In total, we
check 17 mitigations. The mitigations can be classified into three
types - MUST (from CDD), STRONGLY RECOMMENDED (from
CDD), and SUGGESTED (from [64]). Devices are expected to imple-
ment those which are MUST, and STRONGLY RECOMMENDED
at least for a better security posture. Then, we have developed a
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Attack Vector

Mitigation

Building Configuration

Stack Overflow
Control Flow Hijacking
Heap Corruption
Information Leakage
Buffer Overflow

Code Injection
Privilege Escalation
Meltdown

Spectre

Code reuse attacks
Data Leaks

Data Leaks from Heap

Stack Protector

KASLR

Freelist Randomization
USERCOPY

Fortify Source
Non-executable Memory

Restrict Userspace Memory Access

Kernel Page Table Isolation
Branch History Overwrite
Enable CFI in kernel

Prevent use of uninitialized local variables

Enable Heap Initialization

Use After Free Vulnerability ~ Sanitization
Speculative Execution BPF JIT enabled

Free list exploits Harden Slab allocator
Stack corruption

Type confusion Hardware enforced instructions

Virtually mapped kernel pages with guard pages

** CONFIG_HAVE_STACKPROTECTOR or CONFIG_STACKPROTECTOR{_STRONG}
* CONFIG_RANDOMIZE_BASE

CONFIG_SLAB_FREELIST_RANDOM

** CONFIG_HARDENED_USERCOPY

CONFIG{_ARCH_HAS}_FORTIFY_SOURCE

** CONFIG{_ARCH_HAS}_STRICT_KERNEL_RWX or CONFIG_DEBUG_RODATA
** CONFIG_CPU_SW_DOMAIN_PAN or CONFIG_ARM64_SW_TTBRO_PAN

** CONFIG_UNMAP_KERNEL_AT_EL®
CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY

* CONFIG_CFI_CLANG and CONFIG_SHADOW_CALL_STACK

* CONFIG_INIT_STACK_ALL{_ZERO}

* CONFIG_INIT_ON_ALLOC_DEFAULT_ON

CONFIG_DEBUG_LIST

CONFIG_BPF_JIT_ALWAYS_ON

CONFIG_SLAB_FREELIST_HARDENED

CONFIG_VMAP_STACK

CONFIG_ARM64_UAO

Table 2: Attack vectors and mitigations in the kernel covered in our study; X{Y} means that either X or XY can be used for
mitigation. ** means MUST; * means STRONGLY RECOMMENDED in Android 10; + means STRONGLY RECOMMENDED added
in Android 12. For the configuration flags without any marks, they are the ones SUGGESTED by [64].
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Fig. 3: Kernel mitigations adopted by the VR devices; for Pico
devices we only have four versions of each.

script by taking the requirements as reference to analyze the kernel
configuration (the extracted .config file) from the VR kernel bina-
ries. We have examined all mandatory and suggested kernel-level
mitigations to measure their adoption rates among VR devices.

4.3 Longitudinal analysis

In the VR firmware dataset we investigated, we observed that none
of the firmwares adopted all the available mitigations. The mitiga-
tions adopted by different devices are shown in Fig. 3. Quest 1 began
with only two kernel-level mitigations in mid-2019 and then was
increased to six by early 2021, but it received no further enhance-
ments despite additional mitigations becoming available. Quest 2
was launched in late 2020 with eight mitigations and reached nine
within a few months, showing a similarly stagnant update pattern
afterward. From the graph, we observe that the Quest Pro adopts
the same kernel-level mitigations as Quest 2, and the updates were
released on similar days. In contrast, newer models like Quest 3
adopted a significantly larger subset of available mitigations. The
jumps in adopting kernel-level configurations in Quest, Quest 2
and Quest Pro are observed because of updates of Android versions,
indicating that vendors would only include kernel-level mitigations
during major Android version updates. In the case of the Pico 4

and Pico 3 Neo, we observed that the kernel version remains un-
changed, along with the adoption of mitigations and there is no
positive trend in adopting newer mitigations across the 4 versions
we investigated.

Overall we find that Quest 3 has good security posture compared
to other devices. On the positive side, more mandatory mitigations
were adopted by Quest devices over time, even though they were
not included in the initial versions. Although vendors may not
always upgrade to the latest kernel versions, they add mitigations
longitudinally through the device life cycle to enhance security
over time. This approach, while improving security to some extent,
does not fully mitigate the risks associated with outdated kernel
versions. We also studied the missing kernel mitigations that were
not adopted in the latest Quest and Pico devices in our dataset,
shown in Table 4. We observe that both Quest and Pico devices
miss many mitigations.

Kernel versions. One observation from our analysis is that VR
devices tend to use older LTS (Long-Term Support) kernel versions
than the latest LTS versions, the slower pace of Linux kernel adop-
tion could explain the absence of certain kernel-level mitigations.
The kernel version associated each device when they were released,
along with the latest LTS version available, are shown in Table 3.
We can see that the Quest, released in May 2019, adopted Linux
kernel version 4.4, originally released in 2016, even though it could
have adopted version 4.19, released in October 2018. Similarly, the
Quest 2, launched in October 2020, continued to use Linux kernel
version 4.19, despite the availability of version 5.4, released in 2019.
Quest Pro was released in 2022, but it still adopted kernel version
4.19. The Quest 3, released in 2023, adopted Linux kernel version
5.10, even though version 6.1 had been available since 2022. All Pico
headsets use the outdated Linux kernel version 4.19. Even the Pico
4, released in 2024, continued to rely on Linux 4.19, highlighting
Pico’s significant delay in adopting newer kernel versions. One
possible reason vendors continue to use these older kernels is their
focus on stability, as introducing newer kernels may cause issues
that take time to resolve and require significant engineering efforts.
However, this approach creates security gaps, as these devices are
not adopting newer kernel-level mitigations.
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Release date Device  Kernel Version  Latest LTS ~ Android Version
May 2019 Quest 4.4.x 4.19.x 7.1.1
October 2020 Quest 2 4.19.x 5.4.x 10
October 2022 Quest Pro 4.19.x 5.15.x 10
October 2023 Quest 3 5.10.x 6.1.x 12
May 2021  Pico 3 Neo 4.19.x 5.10.x 10
October 2022 Pico 4 4.19.x 6.6.X 10

Table 3: Kernel versions used at the release time of each
device and the latest LTS version available at that time.

Summary. VR devices demonstrate issues related to kernel mis-
configuration. Meta Quest devices are striving to enhance the
implementation of mitigations at the kernel level, while, in con-
trast, Pico devices show no evident longitudinal change in the
adoption of kernel-level mitigations. Moreover, these devices are
not proactively adopting the most recent stable Linux versions
available. This delayed adoption exacerbates security vulnera-
bilities, as older kernels are deficient in incorporating newer
mitigations vital for countering emerging threats.

5 RQ2: Binary Hardening
5.1 Motivation

Binary hardening [1] is a security technique that focuses on analyz-
ing and modifying binary executable to safeguard against common
exploits. This approach often involves non-deterministically alter-
ing control flow and instruction addresses, making it difficult for
attackers to reuse program code and execute successful exploits.
Binary compliance refers to whether a binary follows the hardening
techniques prescribed by Android to prevent security issues. Lack of
binary compliance can introduce vulnerabilities in the VR systems.
This issue is demonstrated by incidents like the Stagefright vulner-
ability (CVE-2015-3864) [77] that exploited the multimedia frame-
work binary that allows remote attackers to execute arbitrary code.
Although Android devices have increasingly adopted advanced
binary hardening techniques [80], it remains unclear to what ex-
tent VR platforms, such as Meta Quest and Pico, implement these
measures. In this section, our objective is to systematically investi-
gate the adoption of binary hardening techniques on VR devices to
identify potential inconsistencies and gaps. Inconsistent implemen-
tation may expose systems to vulnerabilities that might otherwise
be avoided. For instance, Meta’s application of Relocation Read-
Only (RELRO) in Quest 2 [67] demonstrates how vital effective
binary hardening is in ensuring the security of VR ecosystems.

5.2 Methodology

Our study focused on five specific mitigation techniques that should
always be enabled according to CDD: Stack Canaries, Full Reloca-
tion Read-Only (Full RELRO), Fortify Source, Control Flow Integrity
(CFI), and the NX bit, These techniques collectively work to defend
against prevalent exploits and minimize potential vulnerabilities.
Our approach to identifying these mitigations was adapted from
methodologies outlined in past research [80, 105], which primarily
explored these mitigations within embedded systems and Android
environments, which we detail below.
e Stack Canaries are a defense mechanism against stack-based
buffer overflow vulnerabilities by detecting any stack corruption
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before the function returns. To verify the implementation of
Stack Canaries, we check __stack_chk_fail within symbols or
the Global Offset Table (GOT) table.

e Control Flow Integrity (CFI) protects against attacks such as
Return-Oriented Programming (ROP) and Jump-Oriented Pro-
gramming (JOP) by maintaining the correct control flow. We
verify the binary’s symbol table for the existence of . c£fi symbols.

o Fortify Source aims to improve memory safety by identifying
potentially unsafe uses of standard library functions during the
compilation process. Detection involves searching for *_chk func-
tions within the binary; additional indicators include strings like
*buffer overflow detected*, which signify binary fortification.

e NX bitis a defense against buffer overflow attacks by designating
certain memory regions as non-executable, thereby preventing
code execution in those areas. We inspected the binary for the
PT_GNU_STACK segment. If found and marked non-executable, it
signifies that the binary seeks a Non-executable Stack.

e Full RELRO protects critical relocation sections of a binary by
rendering them read-only, thereby preventing GOT overwrite
attacks. The absence of a GNU_RELRO segment indicates that the
binary lacks RELRO protection.

5.3 Longitudinal analysis

Binaries without Canaries, CFI, and Fortify Source. The trend
of binaries without canaries is shown in Fig. 4. Quest 1 had around
150 system binaries without canaries in 2019, gradually increases
to about 300 by 2023, and then remains flat. Quest 2 enters the
market in late 2020 with around 350 binaries without canaries, stays
relatively stable at about 300 through 2022-2023, then increases
rapidly in 2023-2024. Quest 3 and Quest Pro both show similar
patterns (overlapping). All headsets except Quest 1 show a dramatic
spike reaching peaks of around 1000 binaries without canaries in
early 2024. After this spike, there’s a significant drop, followed by a
period of stabilization through 2025. The Quest 1 appears to be the
only Quest headset that did not experience the dramatic spike in
late 2023. Pico 4 did not experience any noticeable changes, while
Pico 3 Neo had an increase in mid 2024. The CFI (Fig. 5) and Fortify
Source (Fig. 6) show a similar trend, albeit the detailed numbers are
different.

Binaries without NX. As observed in Fig. 7, Quest 1 maintains
a consistent level of binaries without NX until the start of 2021,
after which there is a notable drop, then it fluctuates through 2024.
This suggests a significant enhancement for enforcing NX in 2021,
coinciding with an Android version update. Since 2021, Quest 2’s
count of binaries without NX remained relatively stable but saw a
spike in 2023 due to an Android upgrade, followed by fluctuations
into 2024. Quest Pro exhibits a trend similar to Quest 2, though
with slightly elevated values at some points in 2023. Quest 3 begins
with strong NX protection (indicated by a low number of binaries
without NX), and by 2024, this count is nearly halved. Pico 4 does
not show any change, while Pico 3 Neo has a significant jump of
binaries without NX in mid 2024.

Binaries without RELRO. As observed in Fig. 8, Quest 1 starts
extremely high at around 280 binaries with no RELRO protection
in early 2019, then shows a dramatic decline over 2019, stabilizing
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Device Kernel Version Missing Kernel Mitigations

*CONFIG_CFI_CLANG, CONFIG_SHADOW_CALL_STACK, CONFIG_SLAB_FREELIST_RANDOM,
Quest 4.4x  CONFIG_FORTIFY_SOURCE, CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY, CONFIG_DEBUG_LIST,
CONFIG_BPF_JIT_ALWAYS_ON, CONFIG_SLAB_FREELIST_HARDENED, CONFIG_VMAP_STACK, CONFIG_ARM64_UAO
Quest 2 / Quest Pro 419.x  **CONFIG_UNMAP_KERNEL_AT_EL®, * CONFIG_INIT_STACK_ALL_ZERO, TCONFIG_INIT_ON_ALLOC_DEFAULT_ON, *CONFIG_CFI_CLANG
Quest 3 5.10.x  TCONFIG_INIT_ON_ALLOC_DEFAULT_ON
. . **CONFIG_ARM64_SW_TTBRO_PAN, **CONFIG_UNMAP_KERNEL_AT_EL®, CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY,
Pico 3 / Pico 4 4.19x

*CONFIG_CFI_CLANG, CONFIG_DEBUG_LIST, CONFIG_BPF_JIT_ALWAYS_ON

Table 4: Missing kernel mitigations in latest firmware versions.
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around 50-60 through 2020. In early 2021, it drops sharply again to
near zero and remains at that minimal level through 2023. Quest 2
starts in late 2020 with a count much lower than Quest 1’s initial
values. It maintains this level through 2022-2023, then fluctuates but
generally maintaining this range through 2024. Quest Pro shows
the same trend as Quest 2. Quest 3 starts in late 2023 with the lowest
initial values of any headset (around 20), suggesting it launched

Fig. 5: Binaries without CFI

Fig. 6: Binaries without Fortify Source

with better RELRO protection from the start, and then drops to even
lower levels in 2024. This shows Meta’s progressive approach in
enhancing the RELRO protection in Quest devices. Similar to other
results of Pico devices, Pico 4 does not show any change, while Pico
3 Neo has a significant jump in mid 2024.

Spikes. We observed noticeable spikes in the number of not hard-
ened binaries for Quest 2 and Quest Pro after 2023 (Fig. 4, Fig. 5, Fig. 6).
The increase was due to the addition of binaries in preinstalled
apps, most of which lacked hardening. All the added binaries had
names starting with “libxplat”. In subsequent updates, many of
these binaries were removed, specifically the same ones that had
been previously added. Upon investigation, we found that these
binaries were intended to provide cross-platform functionality. We
conjecture that vendors might have opted out of these hardening
techniques due to performance reasons [20], as using these harden-
ing techniques may penalize performance.

Latest version. We analyze the latest versions in Appendix A of
85].

Summary. Within the VR ecosystem, vendors frequently ne-
glect binary hardening techniques, particularly during major
Android version upgrades. While longitudinally we see a slow
but steady reduction in binaries lacking such security measures,
the consistent absence of CFI and Fortify Source across thou-
sands of binaries reveals a significant gap in binary hardening
in VR devices.

6 ROQ3: Preinstalled Apps
6.1 Motivation

Preinstalled apps are those that come with the firmware; the user
cannot uninstall these apps without root. Previous studies [32, 33,
45] have identified the presence of security or privacy-related is-
sues in pre-installed apps, such as privilege escalation, command
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execution, etc. For example, CVE-2018-9525 [21] demonstrated priv-
ilege escalation due to permission bypass; a broadcast receiver
did not enforce android.permission.MANAGE_SLICE_PERMISSIONS,
which caused privilege escalation. In this section, we first study
the ecosystem of the VR system apps, analyze app manifests, and
check how the permission usage and custom permission declaration
change across the firmware versions in the preinstalled apps.

6.2 Methodology

We study two aspects of preinstalled apps on VR devices: security
flags in manifest files, and permissions.

6.2.1 Security flags in manifest files. The AndroidManifest.xml
file is like a blueprint for an app, it declares essential information
such as the app’s package name, components, required permissions,
hardware features, and the minimum Android version it supports.
The system uses it to understand how to launch and run the app. For
investigating the manifest of system apps, we use Androguard [23]
to decompile the apk file and develop a custom script to check the
presence of security flags in the manifest of the apk file. We compile
the following list of security flags based on prior work [45]:

e allow_backup specifies whether the app’s data can be backed
up and restored via Android’s backup mechanism. Setting the
allow_backup flag to true allows user data to be stored in the
cloud. However, this may result in the unintended exposure
of sensitive information, particularly if the application stores
sensitive user or private data.

e debuggable indicates whether an application can be debugged.
Typically, this flag is set to true in debug builds and false in
release builds. If this flag is set to true in a release build, attackers
can leverage debugging tools to inspect the internal state of the
application, examine variable values, and potentially uncover
sensitive information or vulnerabilities.

e use_cleartext_traffic indicates whether an application allows
plaintext (unencrypted) HTTP traffic. Setting this flag to true
allows the application to use plain-text HTTP connections. This
makes the app susceptible to man-in-the-middle (MITM) attacks,
as unencrypted data transmitted over the network can be inter-
cepted and altered.

6.2.2  Permission analysis. We have developed a custom script
based on Androguard [23] to extract all the permissions used along
with their protection levels from the framework-level apk files
(com.oculus.os.platform-res.apk, horizonos.platform-res.apk
and framework-res.apk, which define system-wide permissions)
as well as preinstalled apps (which define custom permissions). We
further study three aspects of permission issues: 1) permission cat-
egorization based on app types; 2) change of permission protection
level; and 3) permission inconsistencies.

Permission categorization based on app types. First, we clas-
sify the apps into three categories. User-launchable apps have a
user interface that can be launched by users. We parsed the mani-
fest file to check the presence of android.intent.action.MAIN and
android.intent.category.LAUNCHER. Android system apps are
part of the Android system. We identified these apps by examining
package names that follow the format com.android. *. Vendor spe-
cific apps are the remaining apps, including the vendor-specific
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Device use_cleartext_traffic allow_backup debuggable

Quest 6 0 0
Quest 2 9 1 0
Quest Pro 9 1 0
Quest 3 9 1 0
Pico Neo 3 27 8 0
Pico 4 27 7 0

Table 5: Security flags in the latest version of VR devices.

ones (e.g., com.oculus. *). Together, these three categories encom-
pass all preinstalled applications.

Change of permission protection levels. Once the applications
and their respective protection levels were identified, we marked
the application permissions that displayed varying protection levels
across device firmware updates. This suggests that the privileges
associated with specific permissions were either enhanced or re-
duced for certain reasons. For instance, if a permission initially set
to normal is later elevated to system, this suggests that there may
have been an event necessitating tighter control.

Permission inconsistencies. We have further analyzed two kinds
of inconsistent permission scenarios: Residual Permission: permis-
sions that are declared in the system but not used by any prein-
stalled apps; and Phantom Permission: permissions that are used by
preinstalled apps but not declared in the system. In both instances,
the permission settings are improperly configured.

6.3 Longitudinal Analysis

6.3.1 Security flags in manifest files. Table 5 displays the current
security flags present in the manifest files of the newest VR device
models. Meta Quest devices have a low number of apps with the
use_cleartext_traffic flag set, reflecting a stricter stance against
allowing unencrypted traffic. Conversely, Pico devices have a much
higher number of apps with use_cleartext_traffic enabled, im-
plying a more lenient approach to cleartext traffic that suggests
potential security risks. For allow_backup, the original Quest device
does not permit backups; however, Quest 2, 3, and Pro models pro-
vide for limited backup capabilities. In contrast, Pico devices have a
much larger number of preinstalled apps allowing backup, indicat-
ing more liberal backup policies, which could pose privacy risks. Re-
garding the debuggable flag, these are universally disabled across all
devices, ensuring that debugging is turned off in production builds.

6.3.2 Permission analysis. We present the permission statistics in
terms of different protection levels of the latest firmware versions
in Table 6. For the latest version, for Quest and Pico devices, the
mean number of dangerous, and normal permissions requested per
app was similar. However, Quest devices request a significantly
larger number of others permissions (2-3x) compared to Pico de-
vices. This is due to the addition of a large number of custom permis-
sions (e.g., 331 in Quest 3) to the Quest device family; Pico does not
add these many custom permissions (e.g., 63 in Pico 4). Moreover,
the VR devices have introduced 17 new dangerous permissions, in-
cluding FACE_TRACKING, BODY_TRACKING, and EYE_TRACKING, which
can be requested by userspace applications.

Permission changes. For Pico devices, we did not observe many
permission changes in their preinstalled apps, so we focus on Quest
devices in the remainder of this section. The longitudinal permission
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Device Dangerous Normal Signature SigOrSys  Others

Quest 2.02 2.93 2.77 0.7 4.87
Quest 2 2.63 3.67 4.09 0.75 8.30
Quest Pro 2.62 3.68 4.08 0.74 8.56
Quest 3 2.64 3.64 4.04 0.74 8.17
Pico Neo 3 1.95 2.92 1.33 0.62 2.86
Pico 4 1.92 2.80 1.29 0.61 2.87

Table 6: Mean of permission counts of the latest firmware;
SigOrSys: SignatureOrSystem; Others: all other permissions.
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Fig. 10: App Categorization of Quest2

changes for Quest 2 are shown in Fig. 9 (similar figures for other de-
vices are presented in Appendix A of [85]). We also plot the number
of apps in the same figure. We find that the number of dangerous
permissions have remained relatively stable across firmware ver-
sions, while normal, signature, and SignatureOrSystem permis-
sions show steady growth over time. others permissions experi-
enced a significant rise, escalating from approximately 300 to over
1000. This suggests a substantial number of custom permissions
were introduced. The most widely adopted permission longitudi-
nally is READ_PRIVILEGED_PHONE_STATE. This permission is used to
obtain the device identifiers. Other commonly requested permis-
sions included ALWAYS_CAPTURE_MIC_AUDIO_INPUT, RECORD_AUDIO,
and START_ACTIVITIES_FROM_BACKGROUND.

Permission categorization based on app types. The app cat-
egorization of Quest 2 is shown in Fig. 10. Android system apps
showed no significant increase in permission usage except during
Android OS upgrades, while User launchable and Vendor specific
apps showed significant increases across versions. Vendor apps
represent more than 50% of the apps. In Fig. 12, we present top-20
Vendor apps with highest permission numbers in Quest 2 (simi-
lar figures for other devices are presented in Appendix B of [85]),
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Fig. 11: Phantom and Residual Permissions of Quest 2

which are selected from a total of 64 apps that are present across
all firmware versions of Quest 2. Several apps consistently show
very high permission counts across all firmware versions, such as
SystemUX.apk, OCMS.apk and VrShell.apk.

Change of permission protection levels. In early versions of
the Oculus Quest, we found that critical Android permissions such
as REQUEST_INSTALL_PACKAGES and SET_TIME_ZONE were incorrectly
marked as normal. Permissions with a normal protection level can
be requested by any app without user approval, potentially allow-
ing malicious apps to disrupt system behavior. With permissions
like SET_TIME_ZONE, third-party apps can disrupt logs, and with
REQUEST_INSTALL_PACKAGES permission, third-party apps can get
the privilege to install other apps. In later versions, the permis-
sion protection level was changed to signature. Additionally, we
identified that a custom permission RECORD_AUDIO_BACKGROUND was
initially assigned a dangerous protection level in Quest and Quest
2. Dangerous permissions can be granted to third-party apps with
user consent, creating a privacy risk, especially for a permission
that allows background audio recording. In later versions (Quest 3
and Quest Pro), this permission was completely removed, probably
due to its sensitive nature.

Another concerning trend was the change in protection levels
for permissions like FACE_EYE_INTERNAL_API and ORTHOFIT_DATA.
These were originally marked as preinstalled in Quest and Quest
2 — meaning only system apps could request them — but were later
changed to dangerous. This shift allows third-party apps to request
these sensitive permissions, increasing the potential for misuse.

Permission inconsistencies. We present the number of phantom
and residual permission counts for preinstalled apps in Quest 2
over time in Fig. 11. We can see that the phantom permissions
increased over time (from 20 to over 80), but residual permissions
fluctuated (between 250 to 300). An instance of residual permis-
sion is PERFORM_SIM_ACTIVATION; although VR devices lack sup-
port for SIM cards, this permission is still specified at the frame-
work level across all Quest device families. A phantom permis-
sion example is CAR_CONTROL_AUDIO_VOLUME, a system-level permis-
sion for adjusting the car’s audio volume when connected via An-
droid Auto. This permission was applied in the Quest 2 within
the VRSystemUI.apk app without being declared, and it was later
removed through updates. Another interesting phantom permis-
sion case is com.oculus.permission.HAND_TRACKING; this permis-
sion was used by preinstalled apps even before it was declared in
the framework-level apk files, which may be the cause of some
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Fig. 12: Top-20 Vendor apps with highest permission numbers in Quest 2.

functionality bugs [96]. Later, the permission was declared in the
framework-level apk files.

Summary. VR devices are prone to vulnerabilities such as acci-
dental data backups and exposure to MITM attacks due to vul-
nerable security flag configurations. Problems like permission
inconsistencies, residual permissions, and phantom permissions
highlight the security concerns in permission management.

7 RQ4: SEPolicy
7.1 Motivation

SEPolicy is a set of rules used by SELinux to enforce Mandatory Ac-
cess Control (MAC) within a system. It specifies how processes (sub-
jects) can interact with other processes and system resources (ob-
jects). Vendors often customize the default Android SEPolicy to suit
their devices. However, incorrect or overly permissive modifications
can introduce security vulnerabilities. By default, SELinux adopts a
deny approach, meaning any action not explicitly permitted by a
rule is denied. Analyzing SEPolicy for VR devices is crucial because
these devices often include customized system components, sen-
sors, and privileged services that aren’t present in standard Android
environments. These additions may require vendor-specific policy
changes, which, if misconfigured, could unintentionally weaken
security boundaries—especially given the sensitive data and capa-
bilities (e.g., camera, motion tracking) involved in VR platforms.

7.2 Methodology

In the firmware images, the SEPolicy files (.cil files) are present
in /etc/selinux in system.img and /etc/selinux in vendor.img.
After extracting the .cil files, we have processed them to extract
the allow (explicitly permit specific actions) and never-allow rules
(prevent certain permissions from being granted). As early Quest
1 firmware (running Android 7) only contains SEPolicy binaries
instead of .cil files, we exclude them from our study; we only
include 24 Quest 1 firmware ranging from April 2021 to December
2023 (running Android 10).

7.3 Longitudinal Analysis

Fig. 13 shows the evolution of SEPolicy rules across different VR
devices. Longitudinally, the number of never-allow rules remains
stable for all devices. The only increase appeared in 2023 for Quest
2, where it upgraded from Android 10 to 12. For allow rules, the
numbers grow gradually for Quest and Pico devices. There are
many more allow rules than never-allow rules for all devices.
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Fig. 13: SEPolicy: Allow and Never-allow Rules

Isolated and untrusted app domains. Isolated and untrusted
app domains in SEPolicy are intended to regulate access by third-
party applications. Through our analysis of allow and never-allow
rules targeting these domains, we observed notable differences
between Quest and Pico devices. Specifically, all devices within
the Quest family retained the default Android SEPolicy configura-
tions, showing no customizations. In contrast, Pico devices exhibit
significant changes to these policies. Pico has explicitly removed
certain never-allow rules associated with isolated and untrusted
app domains. The removal of such rules weakens the SEPolicy’s
rigor on Pico devices. For example, in Pico devices, the never-allow
rules corresponding to net_dns_prop, radio_cdma_ecm_prop were
removed. Moreover, Pico allows untrusted applications to access
vendor-specific property files such as vendor_android_pvr_prop,
which is a property file introduced by Pico. Additionally, another
property, hwservicemanager_prop, typically restricted by Android,
is accessible to untrusted apps on Pico. These property files usually
contain unique device identifiers, and their exposure poses privacy
risks such as device fingerprinting [25, 65].

Summary. VR devices often customize SEPolicies. We found
that some never-allow rules have been removed in VR devices,
which may lead to security issues. Additionally, applications
from untrusted domains can access property files, potentially
leading to privacy issues like device fingerprinting.

8 Discussion

Our longitudinal study of VR firmware reveals several recurring
and systemic security weaknesses across kernel configuration, bi-
nary hardening, application privilege enforcement, and SELinux
policy design. While some protections are partially adopted, the
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overall security posture of VR firmware lags behind modern An-
droid standards. Below, we offer concrete recommendations for VR
device vendors and discuss the limitations of our study.

8.1 Impacts of Our Findings

Lack of proper kernel mitigations (RQ1) can allow privilege escala-
tion attacks that tamper with raw sensor data (e.g., eye-tracking)
or camera feeds. Similarly, weak hardening (RQ2) and mismanaged
permissions (RQ3) can let third-party or preinstalled apps exploit
privileged system services, posing risks in sensitive VR applications
such as medical or military training. In addition, incorrect or overly
permissive modifications of SEPolicy (RQ4) can introduce security
vulnerabilities to the VR platforms, leading to privacy violations
(e.g., leakage of sensitive motion data) or privilege escalations.

We found that VR-specific permissions such as ORTHOFIT_DATA
and FACE_EYE_INTERNAL_API, used for tracking, were changed from
preinstalled to dangerous, exposing sensitive data to third-party
apps and reflecting emerging attack surfaces not present in tradi-
tional Android systems. In addition, SEPolicy customizations in
VR firmware can enable untrusted apps to access vendor-defined
properties related to motion tracking. We also observed that bi-
naries introduced in recent VR firmware (e.g., libsensorutils,
pvr_compute) often lacked standard hardening protections, sug-
gesting a trade-off between real-time responsiveness and security,
that is specific to VR.

8.2 Responses from Vendors

Following responsible disclosure practices, we reported our findings
to Meta and Pico, who have acknowledged our findings. While both
vendors requested proof-of-concept exploits to validate the security
implications, the closed nature of these VR platforms precludes
dynamic analysis capabilities, as detailed in §8.4. Consequently, our
empirical study identifies potential security and privacy vulnera-
bilities through static analysis, rather than demonstrating active
exploits. These findings underscore systemic weaknesses in VR
firmware security that merit further investigation.

Pico’s response. Through iterative communications with Pico’s
development team, we received comprehensive technical responses
regarding our identified security concerns. Pico, like other OEM
vendors, inherits kernel source code directly from SoC manufac-
turers such as Qualcomm. The kernel version is intrinsically cou-
pled with the underlying SoC hardware, making kernel upgrades
infeasible without corresponding hardware changes. This architec-
tural constraint explains why Pico Neo 3 and Pico 4, both utilizing
Qualcomm XR2 SoC, maintain the same 4.19 kernel version. The
development team has committed to maintaining security through
continuous integration of upstream vulnerability patches.

The vendor noted that binary hardening mechanisms (Stack Ca-
naries, CFI, Fortify, NX, RELRO) alone do not determine program
security, as runtime context and program functionality must also
be considered. Their security policy mandates hardening only for
high-risk binaries that expose external services or have known vul-
nerabilities. The vendor cited technical challenges in implementing
universal hardening across their large codebase, including legacy
code compatibility issues and high engineering costs associated
with modifying existing binaries.
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Regarding use_cleartext_traffic flag, Pico explained that de-
spite the flag being enabled, their proprietary network library en-
forces HTTPS, ensuring encrypted network traffic. They also noted
that allow_backup is an intended Android OS feature rather than
a vulnerability, though we analyzed it following prior work [45].

Pico provides SDKs that enable third-party developers to access
device features and enable SEPolicy rules. Their security team is ac-
tively reviewing and refining SEPolicy configurations to eliminate
unnecessary rule modifications in future releases.

Meta’s response. Meta provided targeted feedback on specific find-
ings. They clarified that applications with use_cleartext_traffic
enabled are inherited from AOSP defaults and largely inactive
in HorizonOS. For sensitive permissions like ORTHOFIT_DATA and
FACE_EYE_INTERNAL_API, Meta implemented system-level access
controls restricting usage to authorized system applications. Their
permission deployment strategy involves initial testing with first-
party applications before broader third-party availability, which
may explain the observed permission level transitions.

8.3 Recommendations for Stakeholders

For vendors. A consistent theme across all VR firmware we an-
alyzed is the partial and inconsistent adoption of core Android
security mechanisms. This is mainly because VR firmware devel-
opment currently lacks a standardized, enforceable baseline like
Android’s Compatibility Definition Document (CDD). As a result,
vendors vary significantly in their implementation of core security
practices. We recommend the VR vendors adopt a formal com-
pliance framework that specifies minimum requirements, such as
kernel configurations, compiler flags, SELinux policies, and permis-
sion enforcement rules, modeled on the Android CDD but specific
to VR. Strict SEPolicy isolation should be mandated for new VR
system services, with least-privilege boundaries clearly enforced.

The limited use of advanced mitigations in VR may reflect per-
ceived tradeoffs between performance and security, especially in
latency-sensitive VR environments. Prior works [64, 84, 108] have
demonstrated that hardening techniques, such as CFI, full RELRO,
or updated kernel configurations, can introduce overhead that may
affect rendering performance or real-time sensor processing. How-
ever, our findings suggest that vendors are making these tradeoffs
without fully accounting for the security implications. We recom-
mend that in cases where vendors disable mitigations due to per-
formance constraints, these decisions should be transparently doc-
umented and justified. Alternative defenses, such as stronger sand-
boxing, isolation, or monitoring, should be employed to compensate.
Performance-aware variants of mitigations (e.g., lightweight CFI)
should also be explored. For instance, Site Isolation in Chrome [81]
demonstrates how performance and security can be jointly opti-
mized in large-scale platforms.

Our analysis of preinstalled apps and SELinux policies reveals
that configurations often remove neverallow rules, introduce un-
used domains (e.g., telephony services on non-cellular VR devices),
or fail to isolate new capabilities. Preinstalled apps frequently re-
quest excessive permissions, including access to sensitive data (e.g.,
FACE_TRACKING and EYE_TRACKING), with protection levels changing
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across updates. These patterns suggest inadequate review and en-
forcement. We recommend that vendors regularly audit app permis-
sions and SELinux policies, apply strict protection levels to custom
permissions, and isolate all new services using fine-grained SELinux
domains. Legacy and unused policies should be aggressively pruned
to reduce the attack surface and improve policy clarity.

For developers. VR applications are often built using complex
game engines and development frameworks (e.g., Unity, Unreal),
which offer rapid development workflows but may enable insecure
defaults. Our analysis shows that many apps depend on untrusted
third-party components for core functionality such as motion track-
ing and input handling. We recommend that developers disable
insecure defaults (e.g., allowBackup=true, overly broad intent fil-
ters) and avoid exposing sensitive components unnecessarily. When
using Unity or Unreal, build configurations should be explicitly
hardened following platform guidance (e.g., through ProGuard, and
code obfuscation). In addition, developers should avoid incorporat-
ing third-party libraries for privacy-sensitive functionality (e.g., eye
tracking, facial capture, and spatial tracking) unless they are thor-
oughly vetted. Developers should request only those permissions
essential to app functionality and avoid over-scoping permission
declarations, especially for biometric or sensor data.

For manufacturers. Many modern VR headsets are built on top of
mobile SoCs that include hardware-backed security features (e.g.,
pointer authentication, TEEs). However, we found that these capa-
bilities are often not enabled or not fully integrated into production
firmware. We recommend that chipset manufacturers collaborate
closely with headset manufacturers to ensure that hardware capa-
bilities are fully leveraged and enabled by default in VR firmware
builds. This includes providing reference firmware configurations,
performance benchmarks, and integration guidelines to reduce
adoption barriers.

8.4 Limitations

No source code available for VR devices. VR devices run on
tailored Android systems, with modifications being much more ex-
tensive than those seen in standard Android smartphones. Despite
this, no VR device manufacturer has publicly released its source
code. This makes it extremely challenging, if not impossible, to
infer the underlying reasons for our findings observed in firmware.
For instance, consider the situation involving residual permissions;
had the source code been accessible to us, we could have conducted
a more thorough analysis regarding the presence of these residual
permissions and their potential implications. This limitation also
restricts our ability to study customizations in the framework layer.

No dynamic analysis. Currently, gaining root access on commer-
cial VR devices is not feasible (Except Oculus Go [69]). As a result,
we are unable to escalate privileges or gain system-level access re-
quired to perform dynamic analysis, which is achievable in prior An-
droid firmware papers [56]. In addition, major VR vendors do not i)
provide official simulators, or ii) expose low-level APIs or debugging
endpoints for fuzzing or instrumentation. This limitation restricts
our ability to monitor runtime behaviors, detect dynamic privilege
use, or uncover real-time data flows and interprocess communica-
tion. Consequently, our analysis is constrained to a static approach.
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Limited VR firmware datasets. In our study, we focused primarily
on the VR firmware of the Meta Quest Series and Pico. Although
there are additional VR devices available, such as the HTC Vive and
Varjo, we were unable to locate any available resources regarding
their firmware. Due to the lack of root access, extracting firmware
images directly from the devices is highly challenging. A possible
solution involves capturing the over-the-air updates provided to
these VR devices, which include the updated firmware images. We
leave a thorough exploration of such methods as our future work.

Generalizability. While our research questions and findings are
designed for Android-based VR platforms, and can extend to fu-
ture Android-XR devices, they may not apply to headsets running
fundamentally different OS (e.g., Apple’s visionOS).

9 Related Work

Android firmware analysis. Existing works have performed anal-
ysis on Android firmware to study security issues. Several works
carry out measurement studies on hundreds of Android firmware
from different smartphone vendors [33, 47, 48]. Researchers have
also proposed different firmware analysis tools to study different
aspects such as pre-installed apps [32, 92], security policies [46],
AT commands [93], init routines [52] and unix domain sockets [30].

Android customization. Another important aspect of Android is
the customization introduced by device vendors, as demonstrated
by existing works [4, 28, 53, 60, 80, 100, 104, 113]. Third-party li-
braries are an important component of the Android ecosystem.
Many existing works aim to identify third-party libraries and their
vulnerabilities in Android apps [15, 22, 58, 99, 101, 106, 110]. In our
work, we focus on analyzing firmware of VR systems.

VR application analysis. Other researchers have assessed VR
apps or SDKs to explore privacy concerns. In OVRSeen [95], the
authors conducted an investigation into privacy breaches in Ocu-
lus applications by analyzing network traffic. Subsequently, a tool
named VPVet [107] was developed to evaluate the privacy policies
of VR applications. A recent study [45] has examined third-party
VR apps. Different from these works, our research targets a longi-
tudinal analysis of VR firmware.

VR attacks. Previous studies have revealed that privacy leakages in
VR environments can be exploited for user deanonymization attacks.
Most of these studies utilize built-in sensors (e.g., accelerometer
and gyroscope) in VR headsets and analyze user motion data [14,
50, 55, 59, 72, 73, 78, 79, 87, 94, 111], whereas a few of them employ
specialized external devices to explore other user data [49, 83], e.g.,
electroencephalogram. The attacker may also utilize side channels
to obtain sensitive information. Secrets such as keystrokes in VR
can also be inferred from motion data [62, 71, 87, 111] and other side-
channel information, such as videos of user movements [44, 76, 103],
acoustic signals [63], network traffic [91] and WiFi signals [5]. Re-
cent works [57, 74, 75] have proposed injecting noise into mo-
tion data or identifiable anthropometrics to make inference attacks
harder, which have predominantly used differential privacy [26, 27].
However, these works did not study the firmware of VR systems.
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Conclusion

In this paper, we conduct the first in-depth security analysis of more
than 300 VR firmware over time from two major vendors, Quest
and Pico. Our study uncovers critical security issues within VR
firmware, including absent kernel and binary protections, inconsis-
tent permission settings, and improper removal of SELinux policy
enforcements. This research sheds light on the largely uncharted
area of VR firmware security, providing valuable insights that can
guide the development of future VR systems.

Acknowledgement

The authors from George Mason University (GMU) are supported
in part by 1) a seed funding and GRA awards from the CAHMP
(now CHAIS) Center at GMU, and 2) a seed funding from 4-VA,
a collaborative partnership for advancing the Commonwealth of
Virginia. The author from the University of California, Irvine (UCI)
is supported by the UCI Academic Senate Council on Research,
Computing, and Libraries (CORCL) Award.

References
[1] “Hardening (computing) - Wikipedia — enwikipedia.org” https:
//en.wikipedia.org/wiki/Hardening_(computing).
[2] “Htc community forum,” https://forum.htc.com/.
[3] “Ikconfig - linux kernel configuration database (Ikddb),” https://cateee.net/lkddb/

ey
&

=
o

=
&

web-1kddb/IKCONFIG.html.

Y. Aafer, X. Zhang, and W. Du, “Harvesting inconsistent security configurations
in custom android {ROMs} via differential analysis,” in USENIX Security, 2016.
A. Al Arafat, Z. Guo, and A. Awad, “Vr-spy: A side-channel attack on virtual
key-logging in vr headsets,” in IEEE VR. IEEE, 2021, pp. 564-572.

J. Alakuijala and Z. Szabadka, “Brotli compressed data format,” RFC 7932.
[Online]. Available: https://www.rfc-editor.org/info/rfc7932

Android Developers, “Permissions on android,” https://developer.android.com/
guide/topics/permissions/overview.

——, “Use of native code” 2025. [Online]. Available:
developer.android.com/privacy-and-security/risks/use- of-native-code
Android Open Source Project, “Architecture overview;” 2025. [Online]. Available:
https://source.android.com/docs/core/architecture

——, “Compatibility definition document,” 2025. [Online]. Available: https:
//source.android.com/docs/compatibility/cdd

Apple, “Introducing apple vision pro,” https://www.apple.com/apple-vision-
pro/.

AR Insider, “Consumer and enterprise virtual reality (vr) market revenue
worldwide from 2021 to 2026 (in billion u.s. dollars)” 2022. [Online].
Available: https://www.statista.com/statistics/1221522/virtual-reality-market-
size-worldwide/

L. Archive, “Pico os software,” 2025. [Online]. Available: https://web.archive.org/
web/20250000000000*/https://www.picoxr.com/global/software/pico-os

S. Aziz and O. Komogortsev, “Exploring the uncoordinated privacy protections
of eye tracking and vr motion data for unauthorized user identification,” in IEEE
VR, IEEE, 2025, pp. 217-227.

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection in
android and its security applications,” in CCS, 2016.

K. Cheng, ]. F. Tian, T. Kohno, and F. Roesner, “Exploring user reactions and
mental models towards perceptual manipulation attacks in mixed reality,” in
USENIX Security, 2023.

V. Corporation, “Valve index headset technical specifications,” 2019. [Online].
Available: https://www.valvesoftware.com/en/index/headset

Counterpoint Research, “Global XR (AR & VR Headsets) Market Share:
Quarterly,” https://www.counterpointresearch.com/insight/global-xr-ar-vr-
headsets- market- share-quarterly, 2025.

CVE, “Cve,” https://nvd.nist.gov/vuln/detail/cve-2018-9568.

T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of shadow stacks
and stack canaries,” in AsiaCCS, 2015, pp. 555-566.

N. V. Database, “CVE-2018-9525 Detail,” https://nvd.nist.gov/vuln/detail/CVE-
2018-9525, 2018.

E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated: An empirical
study of third-party library updatability on android,” in CCS, 2017.

A. Desnos et al., “Androguard: Reverse engineering, malware and goodware
analysis of android applications,” https://github.com/androguard/androguard,
2011-2024.

https://

Vamsi Shankar Simhadri, Yichang Xiong, Habiba Farrukh, and Xiaokuan Zhang

[24]
[25]

[26]

[27]

[28]

[29

[30]

[31
[32

33]

[34

[35
[36

[37]
[38]

[39

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47

[48]

[49

[50

[51]

[52]

[53

X. Developers, “Xda developers forums,” https://xdaforums.com/.

Z.Dong, L. Wang, G. Xu, and H. Wang, “On the (in)security of non-resettable
device identifiers in custom android systems,” arXiv preprint arXiv:2502.15270,
2025.

C. Dwork, “Differential Privacy,” in Automata, Languages and Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, vol. 4052, pp. 1-
12, series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/11787006_1

——, “Differential Privacy: A Survey of Results,” in Theory and Applications of
Models of Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
vol. 4978, pp. 1-19, series Title: Lecture Notes in Computer Science. [Online].
Available: http://link.springer.com/10.1007/978-3-540-79228-4_1

Z. El-Rewini and Y. Aafer, “Dissecting residual apis in custom android roms,” in
CCS, 2021.

S. Electronics, Samsung Gear VR Operating Instructions, 2015. [Online]. Available:
https://www.bhphotovideo.com/lit_files/132118.pdf

M. Elgharabawy, B. Kojusner, M. Mannan, K. R. Butler, B. Williams, and
A. Youssef, “Sausage: security analysis of unix domain socket usage in android,”
in (EuroS&P). IEEE, 2022.

ellie, “Vr firmware download - quest series,” https://cocaine.trade/.

M. Elsabagh, R. Johnson, A. Stavrou, C. Zuo, Q. Zhao, and Z. Lin, “{ FIRMSCOPE }:
Automatic uncovering of {Privilege-Escalation} vulnerabilities in {Pre-
Installed} apps in android firmware,” in USENIX Security, 2020.

J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-Rodriguez,
“An analysis of pre-installed android software,” in S&P (Oakland). 1EEE, 2020.
gameishard, “Virtual reality use increases concerns for child safety, study
shows,” https://gameishard.gg/news/over-75-believe-kids-at-major-risk-of-
sexual-abuse-when-using-vr-headsets-report/92677/.

E. Games, “Unreal engine forums,” https://forums.unrealengine.com/.

Github, “Boot-img-extractor,” https://github.com/cfig/
Android_boot_image_editor.

——, “Extract-ikconfig,” https://github.com/torvalds/linux/blob/master/scripts/
extract-ikconfig.

——, “Github,” https://github.com/QuestEscape/exploit/tree/master/CVE-2018-
9568_WrongZone.

Google, “Android security bulletins,” https://source.android.com/docs/security/
bulletin/asb-overview.

——, “Specifications for viewer design - cardboard manufacturer help,” 2015.
[Online]. Available: https://support.google.com/cardboard/manufacturers/
answer/6323398%hl=en

——, “Hardening the kernel in android oreo” https:/android-
developers.googleblog.com/2017/08/hardening-kernel-in-android-oreo.html,
2017.

——, “Android xr: The gemini era comes to headsets and glasses,” 2025. [Online].
Available: https://blog.google/products/android/android-xr/

——, “The compatibility test suite (cts) overview,” https://source.android.com/
docs/compatibility/cts, 2025.

S.R.K. Gopal, D. Shukla, J. D. Wheelock, and N. Saxena, “Hidden reality: caution,
your hand gesture inputs in the immersive virtual world are visible to all!” in
USENIX Security, 2023, pp. 859-876.

H. Guo, H.-N. Dai, X. Luo, Z. Zheng, G. Xu, and F. He, “An empirical study on
oculus virtual reality applications: Security and privacy perspectives,” in ICSE,
2024, pp. 1-13.

G. Hernandez, D. ]J. Tian, A. S. Yadav, B. J. Williams, and K. R. Butler,
“{BigMAC}:{Fine-Grained} policy analysis of android firmware,” in USENIX
Security, 2020.

Q.Hou, W.Diao, Y. Wang, X. Liu, S. Liu, L. Ying, S. Guo, Y. Li, M. Nie, and H. Duan,
“Large-scale security measurements on the android firmware ecosystem,” in
ICSE, 2022.

Q. Hou, W. Diao, Y. Wang, C. Mao, L. Ying, S. Liu, X. Liu, Y. Li, S. Guo, M. Nie
et al., “Can we trust the phone vendors? comprehensive security measurements
on the android firmware ecosystem,” TSE, 2023.

S.Ishaque, A. Rueda, B. Nguyen, N. Khan, and S. Krishnan, “Physiological signal
analysis and classification of stress from virtual reality video game,” in 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). IEEE, 2020, pp. 867-870.

I Jarin, Y. Duan, R. Trimananda, H. Cui, S. Elmalaki, and A. Markopoulou, “Be-
havr: User identification based on vr sensor data,” arXiv preprint arXiv:2308.07304,
2023.

JDSUPRA, “A brave new world: How to manage safety hazards from
augmented reality (ar), virtual reality (vr), and artificial intelligence (ai),”
https://www.jdsupra.com/legalnews/a-brave-new-world-how-to-manage-
safety-3563947/.

Y. Ji, M. Elsabagh, R. Johnson, and A. Stavrou, “{DEFInit}: An analysis of
exposed android init routines,” in USENIX Security, 2021.

W. Jin, Y. Dai, J. Zheng, Y. Qu, M. Fan, Z. Huang, D. Huang, and T. Liu, “Depen-
dency facade: The coupling and conflicts between android framework and its
customization,” in ICSE.  IEEE, 2023.


https://en.wikipedia.org/wiki/Hardening_(computing)
https://en.wikipedia.org/wiki/Hardening_(computing)
https://forum.htc.com/
https://cateee.net/lkddb/web-lkddb/IKCONFIG.html
https://cateee.net/lkddb/web-lkddb/IKCONFIG.html
https://www.rfc-editor.org/info/rfc7932
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/privacy-and-security/risks/use-of-native-code
https://developer.android.com/privacy-and-security/risks/use-of-native-code
https://source.android.com/docs/core/architecture
https://source.android.com/docs/compatibility/cdd
https://source.android.com/docs/compatibility/cdd
https://www.apple.com/apple-vision-pro/
https://www.apple.com/apple-vision-pro/
https://www.statista.com/statistics/1221522/virtual-reality-market-size-worldwide/
https://www.statista.com/statistics/1221522/virtual-reality-market-size-worldwide/
https://web.archive.org/web/20250000000000*/https://www.picoxr.com/global/software/pico-os
https://web.archive.org/web/20250000000000*/https://www.picoxr.com/global/software/pico-os
https://www.valvesoftware.com/en/index/headset
https://www.counterpointresearch.com/insight/global-xr-ar-vr-headsets-market-share-quarterly
https://www.counterpointresearch.com/insight/global-xr-ar-vr-headsets-market-share-quarterly
https://nvd.nist.gov/vuln/detail/cve-2018-9568
https://nvd.nist.gov/vuln/detail/CVE-2018-9525
https://nvd.nist.gov/vuln/detail/CVE-2018-9525
https://github.com/androguard/androguard
https://xdaforums.com/
http://link.springer.com/10.1007/11787006_1
http://link.springer.com/10.1007/978-3-540-79228-4_1
https://www.bhphotovideo.com/lit_files/132118.pdf
https://cocaine.trade/
https://gameishard.gg/news/over-75-believe-kids-at-major-risk-of-sexual-abuse-when-using-vr-headsets-report/92677/
https://gameishard.gg/news/over-75-believe-kids-at-major-risk-of-sexual-abuse-when-using-vr-headsets-report/92677/
https://forums.unrealengine.com/
https://github.com/cfig/Android_boot_image_editor
https://github.com/cfig/Android_boot_image_editor
https://github.com/torvalds/linux/blob/master/scripts/extract-ikconfig
https://github.com/torvalds/linux/blob/master/scripts/extract-ikconfig
https://github.com/QuestEscape/exploit/tree/master/CVE-2018-9568_WrongZone
https://github.com/QuestEscape/exploit/tree/master/CVE-2018-9568_WrongZone
https://source.android.com/docs/security/bulletin/asb-overview
https://source.android.com/docs/security/bulletin/asb-overview
https://support.google.com/cardboard/manufacturers/answer/6323398?hl=en
https://support.google.com/cardboard/manufacturers/answer/6323398?hl=en
https://android-developers.googleblog.com/2017/08/hardening-kernel-in-android-oreo.html
https://android-developers.googleblog.com/2017/08/hardening-kernel-in-android-oreo.html
https://blog.google/products/android/android-xr/
https://source.android.com/docs/compatibility/cts
https://source.android.com/docs/compatibility/cts
https://www.jdsupra.com/legalnews/a-brave-new-world-how-to-manage-safety-3563947/
https://www.jdsupra.com/legalnews/a-brave-new-world-how-to-manage-safety-3563947/

A Longitudinal Security Analysis of VR Firmware

(54]

[55]

[56]

‘@
22,

[73

(74

[75]

SIS
-

=
22

(83]

(84]

Kaspersky, “What are the security and privacy risks of vr and ar’
https://usa.kaspersky.com/resource-center/threats/security-and-privacy-
risks-of-ar-and-vr.

A.Kumar, L.-H. Lee, J. Chauhan, X. Su, M. A. Hoque, S. Pirttikangas, S. Tarkoma,
and P. Hui, “Passwalk: Spatial authentication leveraging lateral shift and gaze
on mobile headsets,” in ACM Multimedia, 2022.

Y.-T. Lee, W. Enck, H. Chen, H. Vijayakumar, N. Li, Z. Qian, D. Wang, G. Petracca,
and T. Jaeger, “{PolyScope }:{Multi-Policy } access control analysis to compute
authorized attack operations in android systems,” in USENIX Security, 2021.

J. Li, A. Roy Chowdhury, K. Fawaz, and Y. Kim, “Kaleido: Real-time privacy
control for eye-tracking systems,” in USENIX Security, 2021.

M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo, “Libd:
Scalable and precise third-party library detection in android markets,” in ICSE.
IEEE, 2017.

J. Liebers, M. Abdelaziz, L. Mecke, A. Saad, J. Auda, U. Gruenefeld, F. Alt, and
S. Schneegass, “Understanding user identification in virtual reality through
behavioral biometrics and the effect of body normalization,” in CHI "21, 2021.
P. Liu, M. Fazzini, J. Grundy, and L. Li, “Do customized android frameworks
keep pace with android?” in MSR, 2022.

P. 1. P. Ltd., “Pico os,” https://www.picoxr.com/global/software/pico-os.

S. Luo, X. Hu, and Z. Yan, “Holologger: Keystroke inference on mixed reality
head mounted displays,” in IEEE VR. IEEE, 2022, pp. 445-454.

S. Luo, A. Nguyen, H. Farooq, K. Sun, and Z. Yan, “Eavesdropping on Controller
Acoustic Emanation for Keystroke Inference Attack in Virtual Reality,” in NDSS,
2024.

L. Maar, F. Draschbacher, L. Lamster, and S. Mangard, “{Defects-in-Depth}:
Analyzing the integration of effective defenses against {One-Day} exploits in
android kernels,” in USENIX Security, 2024, pp. 4517-4534.

M. H. Meng, Q. Zhang, G. Xia, Y. Zheng, Y. Zhang, G. Bai, Z. Liu, S. G. Teo, and
J. S. Dong, “Post-gdpr threat hunting on android phones: Dissecting os-level
safeguards of user-unresettable identifiers.” in NDSS, 2023.

Meta, “Meta community forums,” https://communityforums.atmeta.com/.

——, “Meta quest 2: Defense through offense;” https://engineering.fb.com/2023/
09/12/security/meta- quest- 2-defense-through-offense/.

——, “Set up your boundary for meta ques,” https://www.meta.com/help/quest/
articles/in-vr-experiences/oculus-features/oculus- guardian/.

Meta, “Unlocking oculus go,” https://developers.meta.com/horizon/blog/
unlocking-oculus-go/, 2021.

Meta Platforms, “Meta quest 3: Technical specifications,” 2023. [Online].
Available: https://www.meta.com/quest/quest-3/specs/

U. Meteriz-Yildiran, N. F. Yildiran, A. Awad, and D. Mohaisen, “A keylogging
inference attack on air-tapping keyboards in virtual environments,” in IEEE VR.
IEEE, 2022, pp. 765-774.

R. Miller, N. K. Banerjee, and S. Banerjee, “Combining real-world constraints on
user behavior with deep neural networks for virtual reality (vr) biometrics,” in
IEEE VR. IEEE, 2022.

V. Nair, G. M. Garrido, and D. Song, “Exploring the unprecedented privacy risks
of the metaverse,” arXiv preprint arXiv:2207.13176, 2022.

V. Nair, W. Guo, J. F. O’Brien, L. Rosenberg, and D. Song, “Deep Motion Masking
for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality
Motion Data,” Nov. 2023, arXiv:2311.05090 [cs].

V. C. Nair, G. Munilla-Garrido, and D. Song, “Going Incognito in the Metaverse:
Achieving Theoretically Optimal Privacy-Usability Tradeoffs in VR,” in UIST.
San Francisco CA USA: ACM, Oct. 2023, pp. 1-16.

A. Nguyen, X. Zhang, and Z. Yan, “Penetration Vision through Virtual Reality
Headsets: Identifying 360-degree Videos from Head Movements,” in USENIX
Security, 2024.

NIST-CVE-Database, “Cve-2015-3864,” https://nvd.nist.gov/vuln/detail/CVE-
2015-3864.

L. Olade, C. Fleming, and H.-N. Liang, “Biomove: Biometric user identification
from human kinesiological movements for virtual reality systems,” Sensors, 2020.
K. Pfeuffer, M. J. Geiger, S. Prange, L. Mecke, D. Buschek, and F. Alt, “Behavioural
biometrics in vr: Identifying people from body motion and relations in virtual
reality,” in CHI ’19, 2019.

A. Possemato, S. Aonzo, D. Balzarotti, and Y. Fratantonio, “Trust, but verify: A
longitudinal analysis of android oem compliance and customization,” in S&P
(Oakland). 1EEE, 2021.

C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation for web
sites within the browser,” in USENIX Security, 2019, pp. 1661-1678.

RoadToVR, “Meta has sold nearly 20 million quest headsets, but retention
struggles remain,” https://www.roadtovr.com/quest-sales- 20-million- retention-
struggles/.

J. Salkevicius, R. Damasevi¢ius, R. Maskeliunas, and I. Laukiené, “Anxiety level
recognition for virtual reality therapy system using physiological signals,” Elec-
tronics, 2019.

H. Sidhpurwala, “Hardening elf binaries using relocation read-only (relro),”
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-

[85

[86]

[87]

[88]

[89
[90

[o1]

[92

[93]

[94]

[95]

[96

[97

[98]

[99

[100]

[101]

[102

[103

[104

[105]

[106

[107

[108]

[109

[110

[111

[112

[113

CCS 25, October 13-17, 2025, Taipei

read-only-relro.

V. S. Simhadri, Y. Xiong, H. Farrukh, and X. Zhang, “Virtual reality, real
problems: A longitudinal security analysis of vr firmware,” 2025. [Online].
Available: https://arxiv.org/abs/2509.00662

M. Slater and M. V. Sanchez-Vives, “Enhancing our lives with immersive virtual
reality. frontiers in robotics and ai, 3, 74, 2016.

C. Slocum, Y. Zhang, N. Abu-Ghazaleh, and J. Chen, “Going through the
motions:{AR/VR} keylogging from user head motions,” in USENIX Security,
2023.

S. Smalley and R. Craig, “Security enhanced (se) android: bringing flexible mac
to android.” in NDSS, vol. 310, 2013, pp. 20-38.

ssut, “payload-dumper-go,” https://github.com/ssut/payload-dumper-go.
Statista, “Virtual reality (vr) - statistics & facts,” https://www.statista.com/topics/
2532/virtual-reality-vr/.

Z.Su, K. Cai, R. Beeler, L. Dresel, A. Garcia, I. Grishchenko, Y. Tian, C. Kruegel,
and G. Vigna, “Remote Keylogging Attacks in Multi-user VR Applications,” May
2024, arXiv:2405.14036 [cs]. [Online]. Available: http://arxiv.org/abs/2405.14036
T. Sutter and B. Tellenbach, “Firmwaredroid: Towards automated static analysis
of pre-installed android apps,” in (MOBILESoft). IEEE, 2023.

D.]. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules, P. Traynor, H. Vijayakumar,
L. Harrison, A. Rahmati, M. Grace et al., “{ ATtention} spanned: Comprehensive
vulnerability analysis of {AT} commands within the android ecosystem,” in
USENIX Security, 2018.

P. P. Tricomi, F. Nenna, L. Pajola, M. Conti, and L. Gamberini, “You can’t hide
behind your headset: User profiling in augmented and virtual reality,” arXiv
preprint arXiv:2209.10849, 2022.

R. Trimananda, H. Le, H. Cui, J. T. Ho, A. Shuba, and A. Markopoulou,
“{OVRseen}: Auditing network traffic and privacy policies in oculus {VR},” in
USENIX Security, 2022, pp. 3789-3806.

R. user. (2023) Comment on the post "can’t enabled hand tracking
help?”. [Online]. Available: https://www.reddit.com/r/MetaQuestVR/comments/
1ihblz2/comment/mavwlvw/

T. Verge, “Surveillance will follow us into the ‘metaverse’, and our bodies could
be its new data source,” https://www.washingtonpost.com/technology/2022/01/
13/privacy-vr-metaverse/.

——, “This is meta’s ar / vr hardware roadmap for the next four years,
https://www.theverge.com/2023/2/28/23619730/meta-vr-oculus-ar-glasses-
smartwatch-plans.

X. Wang, Y. Zhang, X. Wang, Y. Jia, and L. Xing, “Union under duress: Under-
standing hazards of duplicate resource mismediation in android software supply
chain,” in USENIX Security, 2023.

L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor customiza-
tions on android security,” in CCS, 2013.

Z.Xie, M. Wen, H. Jia, X. Guo, X. Huang, D. Zou, and H. Jin, “Precise and efficient
patch presence test for android applications against code obfuscation,” in ISSTA,
2023.

XRToday, “Virtual reality security and privacy,” https://www.xrtoday.com/
virtual-reality/virtual-reality- security-and-privacy/.

Z. Yang, Z. Sarwar, I. Hwang, R. Bhaskar, B. Y. Zhao, and H. Zheng, “Can
Virtual Reality Protect Users from Keystroke Inference Attacks?” arXiv preprint
arXiv:2310.16191, 2023.

D. Yu, G. Yang, G. Meng, X. Gong, X. Zhang, X. Xiang, X. Wang, Y. Jiang,
K. Chen, W. Zou et al., “Sepal: Towards a large-scale analysis of seandroid policy
customization,” in WWW, 2021.

R. Yu, F. Del Nin, Y. Zhang, S. Huang, P. Kaliyar, S. Zakto, M. Conti, G. Portoka-
lidis, and J. Xu, “Building embedded systems like it’s 1996,” in NDSS, 2022.

X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, and Y. Liu,
“Automated third-party library detection for android applications: Are we there
yet?” in ASE, 2020.

Y. Zhan, Y. Meng, L. Zhou, Y. Xiong, X. Zhang, L. Ma, G. Chen, Q. Pei, and
H. Zhu, “Vpvet: Vetting privacy policies of virtual reality apps,” in CCS, 2024,
pp. 1746-1760.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and
W. Zou, “Practical control flow integrity and randomization for binary executa-
bles,” in S&P (Oakland). IEEE, 2013, pp. 559-573.

H. Zhang and Z. Qian, “Precise and accurate patch presence test for binaries,”
in USENIX Security, 2018.

J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: reliable identification of
obfuscated third-party android libraries,” in ISSTA, 2019.

Y. Zhang, C. Slocum, J. Chen, and N. Abu-Ghazaleh, “It’s all in your head (set):
Side-channel attacks on ar/vr systems,” in USENIX Security, 2023.

Z.Zhang, H. Zhang, Z. Qian, and B. Lau, “An investigation of the android kernel
patch ecosystem,” in USENIX Security, 2021, pp. 3649-3666.

X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of fragmentation:
Security hazards in android device driver customizations,” in S&P (Oakland).
IEEE, 2014.


https://usa.kaspersky.com/resource-center/threats/security-and-privacy-risks-of-ar-and-vr
https://usa.kaspersky.com/resource-center/threats/security-and-privacy-risks-of-ar-and-vr
https://www.picoxr.com/global/software/pico-os
https://communityforums.atmeta.com/
https://engineering.fb.com/2023/09/12/security/meta-quest-2-defense-through-offense/
https://engineering.fb.com/2023/09/12/security/meta-quest-2-defense-through-offense/
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/oculus-guardian/
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/oculus-guardian/
https://developers.meta.com/horizon/blog/unlocking-oculus-go/
https://developers.meta.com/horizon/blog/unlocking-oculus-go/
https://www.meta.com/quest/quest-3/specs/
https://nvd.nist.gov/vuln/detail/CVE-2015-3864
https://nvd.nist.gov/vuln/detail/CVE-2015-3864
https://www.roadtovr.com/quest-sales-20-million-retention-struggles/
https://www.roadtovr.com/quest-sales-20-million-retention-struggles/
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://arxiv.org/abs/2509.00662
https://github.com/ssut/payload-dumper-go
https://www.statista.com/topics/2532/virtual-reality-vr/
https://www.statista.com/topics/2532/virtual-reality-vr/
http://arxiv.org/abs/2405.14036
https://www.reddit.com/r/MetaQuestVR/comments/1ihblz2/comment/mavwlvw/
https://www.reddit.com/r/MetaQuestVR/comments/1ihblz2/comment/mavwlvw/
https://www.washingtonpost.com/technology/2022/01/13/privacy-vr-metaverse/
https://www.washingtonpost.com/technology/2022/01/13/privacy-vr-metaverse/
https://www.theverge.com/2023/2/28/23619730/meta-vr-oculus-ar-glasses-smartwatch-plans
https://www.theverge.com/2023/2/28/23619730/meta-vr-oculus-ar-glasses-smartwatch-plans
https://www.xrtoday.com/virtual-reality/virtual-reality-security-and-privacy/
https://www.xrtoday.com/virtual-reality/virtual-reality-security-and-privacy/

	Abstract
	1 Introduction
	2 Background
	2.1 VR Device Types
	2.2 VR Firmware
	2.3 Android Customization
	2.4 Android Compliance Check
	2.5 Android Security Features

	3 Overview
	3.1 Research Goals
	3.2 VR Firmware Dataset
	3.3 Firmware Image Analysis

	4 RQ1: Kernel Misconfiguration
	4.1 Motivation
	4.2 Methodology
	4.3 Longitudinal analysis

	5 RQ2: Binary Hardening
	5.1 Motivation
	5.2 Methodology
	5.3 Longitudinal analysis

	6 RQ3: Preinstalled Apps
	6.1 Motivation
	6.2 Methodology
	6.3 Longitudinal Analysis

	7 RQ4: SEPolicy
	7.1 Motivation
	7.2 Methodology
	7.3 Longitudinal Analysis

	8 Discussion
	8.1 Impacts of Our Findings
	8.2 Responses from Vendors
	8.3 Recommendations for Stakeholders
	8.4 Limitations

	9 Related Work
	10 Conclusion
	References

