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ABSTRACT
Recently, clipboard usage has become prevalent in mobile apps
allowing users to copy and paste text within the same app or across
different apps. However, insufficient access control on the clipboard
in the mobile operating systems exposes its contained data to high
risks where one app can read the data copied in other apps and
store it locally or even send it to remote servers. Unfortunately,
the literature only has ad-hoc studies in this respect and lacks
a comprehensive and systematic study of the entire mobile app
ecosystem. To establish the missing links, this paper proposes an
automated tool, ClipboardScope, that leverages the principled static
program analysis to uncover the clipboard data usage inmobile apps
at scale by defining a usage as a combination of two aspects, i.e., how
the clipboard data is validated and where does it go. It defines four
primary categories of clipboard data operation, namely spot-on,
grand-slam, selective, and cherry-pick, based on the clipboard usage
in an app. ClipboardScope is evaluated on 26,201 out of a total of 2.2
million mobile apps available on Google Play as of June 2022 that
access and process the clipboard text. It identifies 23,948 , 848 , 1,075 ,
and 330 apps that are recognized as the four designated categories,
respectively. In addition, we uncovered a prevalent programming
habit of using the SharedPreferences object to store historical
data, which can become an unnoticeable privacy leakage channel.

CCS CONCEPTS
• Security and privacy→ Software security engineering; Soft-
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1 INTRODUCTION
The clipboard has become a vital feature in modern mobile oper-
ating systems, including iOS and Android. Its copy, cut, and paste
functions allow users to move text within the same app or across
different apps seamlessly. Interestingly, Android supported cross-
app clipboard usage from its initial release, while iOS only allowed
within-app copy and paste at first and later added cross-app func-
tionality after iOS 3.0. The clipboard’s convenience makes it easy
for users to perform text-related tasks, such as copying a verifica-
tion code from a messaging app and pasting it into other apps for
multi-factor authentication. As a result, many mobile apps have
developed advanced functionality built upon the clipboard, making
it an integral part of mobile users’ daily routines. For instance, input
method apps provide hints that automatically fill in the blanks with
the copied text.

Despite the convenience of copying and pasting text across dif-
ferent apps, this clipboard’s ability can pose significant security and
privacy concerns. That is because the clipboard temporarily stores
the copied text, while there is only weak or even no access control
mechanism enforced. In other words, once a piece of text is copied,
any app running in the foreground could access such data via the
clipboard regardless of whether the app is intentionally opened or
just happens to be in the foreground when sliding between multi-
ple apps. For instance, input method apps could gain access to the
sensitive verification codes when people copy this code from the
messaging app and paste it into another app.

Unfortunately, it could be overly optimistic to assume that mobile
apps only access clipboard data to display it on the screen; apps may
illegally store sensitive text copied from other apps. Recent works
have conducted a few case studies that revealed several possible
attack vectors targeting these data, including contact records [53]
and cryptocurrency wallets [26]. Some apps have even been found
to send clipboard data directly to their backend servers [39]. Al-
though these studies were conducted manually and limited to a
relatively small set of apps, they highlight the potential privacy
risks associated with unrestricted clipboard usage. On the other
hand, while mobile operating systems have deployed mechanisms
to notify users when their copied text is accessed, these mechanisms
may not be sufficient to protect user privacy. For example, Android
10 [12] blocks background apps from accessing the clipboard; how-
ever, apps can still secretly conduct suspicious monitoring in the
foreground. Android 12 [13] can show a toast message to inform
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users that the clipboard has been accessed, but enabling this feature
requires a tedious manual switch-on process [36].

According to our preliminary study, the misuse of clipboard
functionality in mobile apps may be more alarming than previ-
ously reported. Upon manually inspecting several popular apps
that access the clipboard, we discovered some concerning practices.
For instance, a third-party input method editor app with over one
million installs automatically logs the clipboard contents to local
storage each time the user finishes input. We also found a communi-
cation app with over 100 million installs that continuously monitors
clipboard status and automatically saves its content whenever it’s
updated. Furthermore, a shopping app with over 500 thousand in-
stalls attempts to obtain clipboard data each time users paste it into
the search box without any modification and sends the data to its
backend server upon resuming from the background.

Therefore, there is an urgent need to understand how apps access
the clipboard data, how they deal with such data, and to what
extent these actions expose severe security and privacy risks. To
this end, in this paper, we propose a new static analysis framework
called ClipboardScope to systematically and automatically analyze
clipboard-related operations in mobile apps on a large scale. At
a high level, ClipboardScope combines a static taint analysis with
particular consideration of efficient and precise control/data flow
tracking capabilities in the Android framework to understand how
an app accesses and processes data from the clipboard. Specifically,
ClipboardScope defines a clipboard data operation in a combination
of two code aspects, i.e., data validation (e.g., format checking) and
data destination (e.g., screen, local storage, and backend servers).
Finally, ClipboardScope classifies an execution path of a clipboard
data operation into various categories based on the combination of
their data validation and data destination.

At a high level, we have classified four primary categories of
clipboard data operation categories: (𝑖) the “spot-on” operation that
some apps take the clipboard data and display them on the screen
only, which complies with the guideline of clipboard usage. Second,
some apps will store the clipboard data locally or send them to
the remote regardless of whether displaying them on the screen
or not. In particular, we could further divide these operations into
several sub-categories based on how apps manipulate the clipboard
data. Specifically, these include (𝑖𝑖) the “grand-slam” operation that
apps have no particular requirement of the data but just store and
send them without exception, (𝑖𝑖𝑖) the “selective” operation that
apps will store or send the whole copied text if the data contains
certain keywords, and (𝑖𝑣) the “cherry-pick” operation that apps
only store or send a specific part of the copied text if the whole
text containing certain keywords, e.g., the first four numbers after
the keyword “OTP”. These categories could ultimately assist in
recognizing potential security and privacy risks.

We have implemented a prototype of ClipboardScope1 and stud-
ied the current state of clipboard data usage by analyzing 2.2million
Android apps from Google Play and a well-maintain repository,
AndroZoo [2]. First, we leveraged the system APIs that an app must
invoke to get access to the clipboard (e.g., getPrimaryClip) and
identified 185,423 apps with clipboard-accessing functionality. In
particular, we have identified 23,948 appswith the spot-on operation

1Available at https://github.com/CityuSeclab/ClipboardScope_open.

and 2,253 apps that might transfer data, among which 2,228 attempt
to store the data locally and 43 transfer the data through the Inter-
net. Interestingly, we uncovered a prevalent programming habit
of using the SharedPreferences object to store historical data,
which can become an unnoticeable privacy leakage channel.
Contribution. In short, we make the following contributions:
• Novel Research.We take the first step toward understanding
the current state of clipboard usage in mobile apps at scale and
classifies the clipboard usage into four primary operations.

• Automatic Tool.We devise a systematic tool, ClipboardScope,
containing a suite of novel static analysis techniques to automati-
cally classify and recognize various clipboard usage operations in
mobile apps by analyzing the execution sequence of the program.

• Comprehensive Evaluation. We have evaluated Clipboard-
Scope on a dataset of 2.2 million up-to-date mobile apps as of
June 2022. It discovered 26,201 apps that attempt to access and
process the clipboard text and revealed that 2,253 apps can locally
store the data or transfer it to externals.

2 BACKGROUND AND MOTIVATION
2.1 Mobile Apps and Clipboard
In Android, the system clipboard is accessible by all apps, and no
explicit permission grant is required for manipulations. In partic-
ular, the Android system clipboard is represented by the global
ClipboardManager class, whose reference can be obtained by in-
voking getSystemService(CLIPBOARD_SERVICE). When a copy
action happens, the clipboard is updated by a newly created Clip-
Data object with an in-class Item object storing the actual contents
(e.g., text, Uri, and Intent). In ClipboardManager, we can obtain the
ClipData object through the getPrimaryClip method. Although
it can contain multiple Item objects (e.g., for other data processing
purposes), the copying only results in one Item object by default.
Therefore, we can simply consider the operation of accessing the
first Item object in the clipboard by calling getItemAt(int) on
the ClipData object with integer 0 as the argument, on which the
stored texts can be finally retrieved by invoking getText. When a
copy action happens, the clipboard is updated by a newly created
ClipData object with an in-class Item object.

2.2 Motivating Example
In Figure 1, we present a motivating example that abstracts from a
popular real-world app with over one million installs. This app had
the capability to secretly transfer contents that users pasted into the
search box to a third-party server. These search records could then
be used to build customer profiles for accurate recommendation
and advertising, as well as for other profitable purposes. Sending
data in the search field within an app may seem legitimate most
of the time. However, in this case, the data was sent automatically
without the users’ consent, implying that the third party could
obtain whatever the user pasted, including sensitive content copied
by mistake. This constitutes a privacy leak channel.

Specifically, a customized class A, serving as a search box in the
app, which is inherited from the EditText widget, overrides the
callback function onTextContextMenuItem to modify the default
behavior taken when users click “paste” in the text box’s pop-up
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static void c(Context arg1, String arg2, String arg3){
  arg1.getSharedPreferences(arg1.getPackageName(), 0)

.edit().putString(arg2, arg3);
}

j(Context arg1, String arg2){ ... this.b = arg2; }

static String a(Context arg1, String arg2){
  return arg1.getSharedPreferences(arg1.getPackageName()
                , 0).getString(arg2, “”);
}

static String u(Context arg1) {
  ClipData v0 = ((ClipboardManager)arg1

.getSystemService(“clipboard”)).getPrimaryClip();
  return v0 != null ?    
             v0.getItemAt(0).getText().toString() : “”;
}

public class c implements Runnable {
  
  public c(byte[] arg1) { this.a = arg1; }

  public void run() {
    ...
    HttpURLConnection v1 = (HttpURLConnection)
                                  v0.openConnection();
    DataOutputStream v2 = new DataOutputStream(
                                v1.getOutputStream());
    v2.write(this.a);
  ...

public class A extends EditText {
  public boolean onTextContextMenuItem(int arg1) {
    Switch (arg1) {
      case 16908322:  // paste
        String v0 = a.u(this);
        if (!TextUtils.isEmpty(v0)
            && !v0.equals(w.a(a.d(), “temp_clip”))) {
          w.c(a.d(), “temp_clip”, v0));
          this.setText(v0);
          i.a(a.d(), “temp_clip”);
          ...

public final class i {
  private static final Handler a;
  private static final StringBuilder b;
  static {
    ...
    i.a = new l(v1.getLooper());
    i.b = new StringBuilder();
    ...
  }

  public static void a(Context arg3, String arg4) {
    i.a.sendMessage(i.a.obtainMessage(0,
                   new j(arg3, w.a(arg3, arg4))));
  }

  
  static void d(Context arg3) {
    JSONObject v0_1 = new JSONObject();
    v0_1.put("t", i.b.toString());
    ...
    h.getHandler().post(new        
                     c(v0_1.toString().getBytes()));
    ...
  }

  public static void a(Context arg2){
    i.a.sendMessage(i.a.obtainMessage(1, arg2));
  }
  ...
}

public final class l extends Handler {
  public final void handleMessage(Message arg3) {
    switch (arg3.what) {
      case 0:
        Object v0 = arg3.obj;
        if((v0 instanceof j)) {
          i.b.append(((j) v0).b);
        ...
      case 1:
        i.d(((Context)arg3.obj));
    ...

void onResume() {
  super.onResume();
  i.a(this);
  ...
}

Figure 1: A simplified running example sending pasted contents to the back-end server each time it resumes.

menu. It first retrieves the clipboard text with a helper function (step
1 ), and verifies whether the content exists (emptiness check) and
is newly copied (duplication verification with the stored up-to-date
data obtained in step 2 ). Then, if both conditions hold, it updates
the SharedPreferences object with the new data and the key
“temp_clip” (step 3 ). In the next step, the app displays the copied
content in the search box with the EditText.setText method,
after which it calls i.a (step 4 ), obtains (step 5 ) and writes the
data to a field j.b inside the constructor of j, and then constructs
a Message object with the newly created j as the obj argument.
Next, the created Message is pushed to the processing queue of the
thread held by the Handler object i.a (step 6 ). Recall that the sent
Message is constructed with 0 as the what argument, therefore, it
is processed in the case 0 branch of the switch statement inside
the handleMessage method, where the current field of interest,
arg3.obj.b, is appended to the static class variable i.b.

On the other hand, when the app resumes from the background,
the called onResume method invokes i.a (step 7 ), inside which
another Message is sent with what being 1 (step 8 ) to further call
i.d (step 9 ). Then, the static variable i.b, which holds data from
the clipboard, is put into a JSONObject, converted to bytes, and
stored in the field a of a newly created c object. Finally, this object,
implementing the Runnable interface, is posted to the task queue,
and its run method will be executed (step 10 ), where this.a is
transferred to the backend server.

3 OVERVIEW
3.1 Challenges
We must tackle two key challenges to build ClipboardScope.
C1: How to precisely pinpoint the execution sequence re-
lated to the clipboard data in an app.While static taint analysis
techniques have been well-studied in app vulnerability discovery,
e.g., Flowdroid [5], IccTA [27] and DroidSafe [19], their capabilities
and overhead in analyzing large apps (e.g., over 50MB) hinder their
practicalities in nowadays apps on the market. Although there are

numerous works on large-scale app analysis, they all have specific
focuses (e.g., cloud-service API misuse [63], privilege-escalation
vulnerabilities in pre-installed apps [15], and input validations [58]).
They are difficult to be generalized to our case. More importantly, in
the example shown in Figure 1, apps are multi-threaded with asyn-
chronous function calls (e.g., step 6 , 8 , and 10 ), and data might
flow in global instances (e.g., static field i.b and SharedPrefer-
ences objects) or be used in inter-component communication (e.g.,
Intent), which results in discontinuous control and data flows,
making the analysis challenging. Therefore, we must overcome the
above issues to uncover the whole execution sequence of interest.
C2: How to recognize different clipboard usages from the ex-
ecution sequence. Having detected the execution sequence of the
retrieved clipboard data, we need to recognize the corresponding
clipboard usage. However, this is by no means trivial because the
purposes of using these data remain unknown. For instance, in the
scenario where an app retrieves the clipboard content and sends it
to its backend server through the Internet; if this is an IME app, it
might be malicious since arbitrary contents on the clipboard are
leaked to third parties. However, suppose this appears in a shopping
app that attempts to automatically scan the clipboard for the shar-
ing texts and request the commodity’s page; it could be regarded as
an approved functionality. In these cases, simply identifying taint
sources and sinks (i.e., system APIs for clipboard text retrieval and
data transferring) like the previous work [5, 28, 40] is not sufficient.
It is significant to accurately and effectively analyze the clipboard
usage from the execution sequence with limited information.

3.2 Insights
S1: pinpointing clipboard data related execution sequence
via context, flow, path, and object-sensitive static analysis.
To conduct hidden operations in the background by invoking asyn-
chronous tasks, apps must implement specific systematic interfaces
or derive customized code from abstract callbacks. Therefore, we
first identify the method entry for asynchronous calls through a
context and flow-sensitive backward search and then construct
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Figure 2: Overview of ClipboardScope.

new control flows. In the case of discontinuous data flows, our
approach depends on the cause of the issue. If the issue is caused
by tainted static variables, we adopt an object-sensitive approach
that broadcasts tainted static variables and searches for all variables
of interest. If the taint flows into key-value structures, we resolve
the key value and search for any retrieved values via this key. This
approach effectively addresses discontinuous data flows.
S2: recognizing a clipboard usage through a clipboard opera-
tion context. An important insight in this context is that clipboard
data undergoes certain operations before being locally stored or
transferred to servers. By analyzing these operations, we can infer
the purpose of the clipboard data usage. We construct the semantic
information of an execution sequence based on two orthogonal
aspects: (i) the type of format validation methods used on the clip-
board text, and (ii) the existence of text extraction operations. For
instance, consider the code in Figure 1 which sends out clipboard
data without any format validations. This indicates that no func-
tionalities in the app require clipboard sniffing, making it a case
of clipboard snooping. In particular, some manipulations on the
retrieved clipboard String data can be categorized as:

• Equivalence Comparison. Conducting some equivalence com-
parisons after getting the clipboard text is a common program-
ming pattern in apps. The purposes of this operation are: (i)
emptiness check by invoking, e.g., String.isEmpty and String
.equals(“”), to avoid further processing on empty strings, (ii)
duplication verification that compares the current clipboard
text with the previous one to avoid duplicate operation (e.g.,
auto-filling a text box twice), and (iii) hidden function that is
triggered by special copied contents on the clipboard (e.g., the de-
bug mode is activated if a special pre-defined string is detected),
which is aligned with the previous work [58].

• Compatibility Examination. Apps may leverage the clipboard
to realize functionalities (e.g., directing to webpages of goods
and auto-filling the invitation code). To achieve that, they need
to confirm that the copied texts are compatible with certain
formats by either performing: (i) rigorous format validation
by calling, e.g., String.startsWith and Sring.endsWith, to
check whether the string starts or ends with certain identifiers,
or indexOf to examine the existence and position of a certain
sub-string; (ii) resilient format validation to examine strings
with looser rules, e.g., String.matches or String.contains, to
validate whether a string matches some regular expressions or a
specific identifier occurs in the string.

• Content Filtering. Regarding the content an app actually uses,
we consider two orthogonal cases: (i) no modification that
the raw text retrieved from the clipboard is kept (e.g., logging
the copied texts), and (ii) text extraction, in which portions
of the raw text are filtered out for further processing (e.g., a
shopping app extracts the URL after the symbol “:” from a piece
of sharing text via System.substring for the direction to an
online shopping page and a VPN app firstly converts the JSON-
like string into a JSON object and then parses configuration
settings with JSONObject.optString).
On the other hand, apps finally direct the obtained text clips to

different destinations, which can be categorized as:
• Displaying to Users. This is the most common behavior of an
app that meets users’ expectations, in which the copied contents
are observable, and the users are aware that the app perceives
the copied contents. This kind of operation is mainly processed
by invoking methods that show contents in a text box, such as
EditText.setText and EditText.setHint.

• Storing Locally. This behavior is often hidden from users and
can be suspicious since the clipboard is typically used for tempo-
rary data transfer rather than long-term data storage. It’s worth
noting that aside from APIs in the Java.io category for direct
file writing, inserting data into objects like SharedPreferences
and SQLiteDatabase can also lead to local data copies in storage.

• Transferring to Servers.Data from the clipboard might be used
in some networking functionalities. It can either be a URL through
which the app can initiate a connection with the corresponding
service provider, or be enclosed and sent out by post request to
third-party servers.
Having such a context, we derive several rules to classify and

recognize different clipboard usages. The recognition could further
assist in justifying the necessity of the clipboard data for the func-
tionality of an app and identifying potential malicious usages or
privacy leaks from the execution sequence.
3.3 ClipboardScope Overview
The overall design of ClipboardScope is depicted in Figure 2. Given
an APK file, the proposed static analysis technique is used to ex-
tract the execution sequence, revealing how the app processes the
clipboard text. We then analyze the execution sequence from three
dimensions: (i) the content validation type showing how the clip-
board text is verified, (ii) the text content filtering process extracting
information from the text, and (iii) the final destination identifica-
tion indicating how the data is used. Using the information revealed

4



Attention! Your Copied Data is Under Monitoring: A Systematic Study of Clipboard Usage in Android Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Type Class API

So
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s ClipboardManager getPrimaryClip()

->[ClipData.Item: getText() | ClipData.Item: coerceToText()]

ClipboardManager getText()

Si
nk

s
Re

.V
. String contains(CharSequence), matches(String)

Pattern matches(String, CharSequence), matcher(CharSequence)

Ri
.V

. String, StringBuffer indexOf(String), lastIndexOf(String)
String startsWith(String), endsWith(String)

T.
E. String subString(int, int), subSequence(int, int)

JSONObject optString(String), opt(String, String)

D
at
a
D
es
t.

java.io.* write(*), print(*), println(*)
java.net.* <init>(URL), getOutputStream() ->java.io.*
okhttp3.* add(String, String), url(String)
SQLiteDatabase insert*(String, String, ContentValues), execSQL(String)
SharedPreferences.Editor putString(String, String), putStringSet(String, Set<String>)
EditText setText(CharSequence), setHint(CharSequence)

Table 1: The taint sources and sinks used in ClipboardScope:
“->” indicates the execution order, Re. V. for resilient format
validation, Ri. V. for rigorous format validation, T. E. for text
extraction, Data Dest. for data destinations.

from the execution sequence, with formulated policies, we can infer
the purpose of the clipboard use at a high level and uncover any
privacy-related issues that might arise.

3.4 Scope and Assumptions
This paper focuses on understanding clipboard usage in Android
apps while it could be extended to applications on other plat-
forms. Specifically, ClipboardScope only analyzes in-app operations
on text-based contents on the clipboard (i.e., String-type data),
which can be obtained through Item.getText or ClipboardMan-
ager.getTextmethods. This is because manually copied texts and
most app-posted clipboard data are always stored as Text. While
apps may attempt to retrieve other MIME types of data from the
clipboard, such as Intent for application shortcuts or Uri for re-
solving complex data (e.g., images) from the Content Provider,
analyzing these operations is beyond the scope of this paper, even
though they might raise privacy concerns. In addition, the anal-
ysis is based on the code implemented at the Java bytecode level
in Android apps and is resilient to many code obfuscation tech-
niques (e.g., class and method renaming) but may fail in cases when
the apps use native libraries or invoke methods through reflection.
Moreover, our focus is solely on operations conducted via standard
system APIs, and other third-party APIs are out of scope.

4 DETAILED DESIGN
4.1 Identifying Clipboard Text Manipulations
InClipboardScope, we use static taint analysis techniques to pinpoint
manipulations on the clipboard text. Since there are numerous
operations of interest, including format validations, text extractions,
and data destination identification (i.e., displaying, local storage
and remote servers), we need to customize its sources and taint
sinks to record this information. Specifically, in this study, we have
systematically investigated standard Android APIs and defined the
sources and sinks, which are listed in Table 1.
• Taint Sources. As described in Section 3.4, in this study, we
only focus on text data retrieved from the clipboard. Therefore,

the getText or coerceToText method following the getPrima-
ryClip are both set as our sources. In addition, we also notice
that a deprecated method, getText of the ClipboardManager
class, can directly obtain the text data stored on the clipboard;
therefore, we also consider it as the source.

• Taint Sinks. The sinks contain APIs for text manipulations of
interest. As discussed in Section 3.2, we categorize them into
four different groups, including resilient and rigorous format
validations, text extractions, and data destinations. Note that,
for the networking APIs, we consider either leveraging the URL
from the clipboard to initialize a network communication or
transferring the clipboard data in a built network channel.

4.2 Execution Sequence Extraction
We first describe the construction of the inter-procedural Control-
Flow Graph (ICFG) and inter-procedural Data-Flow Graphs (IDFG)
and then elaborate on the solutions to the discontinuity problem
in both control and data flows discussed in Section 3.1. At last, we
summarize the properties of the proposed taint analysis technique.
Building ICFG and IDFG. The first step is to construct an app’s
ICFG. The ICFG consists of nodes, which are basic blocks containing
consecutive statements with no branches in except at the entry and
no branches out except at the exit. Each directed edge in the ICFG
represents a control-transfer statement, e.g., an if-else conditional
transfer or a call-in and the corresponding call-out edges between
the caller and callee sites either within or across classes.

Atop the built ICFG, we traverse the statements and construct
IDFG. The IDFG defines the data dependency among the instruc-
tions in the ICFG, with each node representing one data flow source
or destination corresponding to the specific operation semantic (e.g.,
an assignment statement propagates data from the RHS to the LHS,
a method call directs data from the caller site to the parameter of
the invoked method, and the return statement routes data from
the method body back to the corresponding variable at the caller
that receives returned values). In particular, since Android apps
are developed using Java, an OOP language, we track data flows
through member fields and maintain the data hierarchy. For in-
stance, after step 5 in Figure 1, the returned tainted value flows
to j.b, which makes both field j.b and the object j registering
this field tainted, but leaves other fields (e.g., j.a) unchanged. In
addition, if the tainted field is killed (e.g., j.b = new c()), we check
upward to ensure whether there still exists any other tainted fields.
If not, j is untainted, and this back-propagation keeps on until
it subsequently reaches the first still-tainted field (suppose j is a
member field of another outer class) or un-taints the whole class in-
stance. Therefore, with this design, in ClipboardScope, we can track
data flow more precisely in an object- and field-sensitive manner.
Handling Asynchronous Function Calls. The Android apps are
always multi-threaded, with tasks processed in the background.
According to our preliminary study, sensitive functionalities, such
as I/O and networking operations, are usually conducted in the
background to avoid blocking the foreground activity. This intro-
duces challenges in constructing the correct ICFG. This is because,
unlike invoking a method by its method signature, in asynchronous
cases, the corresponding callbacks are processed by the Android
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system, making the control flows cannot be identified and con-
structed directly from the call-site, e.g., the tainted Message object
is forwarded by the sendMessage method and processed in the
handleMessage callback at step 6 in Figre 1; while at step 10 , the
post method queues the tainted c object in the background and
eventually the implemented run method is executed.

ClipboardScope processes asynchronous function calls separately
from the normal ones. Although the callee corresponding to the
caller cannot be directly matched, apps must use system APIs to
invoke asynchronous processing. These APIs are known; therefore,
we first identify them at the call site. Then, given the API infor-
mation, we locate the object of interest and afterward determine
the method in charge. This is because even though asynchronous
tasks can be invoked in different ways, the final method respon-
sible for the processing is deterministic for each class and can be
correctly located by backward searching for the initialization site
(i.e., the new statement) of the instance. For instance, an object of a
class implementing Runnable interface can be invoked by either
Handler.post or Thread.start, once we identify that the first
argument in the former case and the argument used to initialize the
base object in the latter case is of interest and trace back to its ini-
tialization site, we can locate the runmethod in the associated class
and complete the ICFG. Notice that if the located class is inherited
from another class and the method of interest is not directly imple-
mented in the current one, we search the class hierarchy upward
until the method is found.
Handling Discontinuous Data Flows.We perform on-demand
IDFG construction that only propagates tainted values atop the
ICFG for acceptable computational overhead; however, this might
lead to missing some important data flows. For instance, in Figure 1,
the static field i.b is tainted in the case 0 block and reaches the fi-
nal sink writemethod following the data flow. However, the actual
control flows (step 7 to 9 ) are not traversed since there are no
tainted values involved, leading to missing the resultant leak from
i.b. As for the tainted value flows in and out from the Shared-
Preferences object by the putString and getStringmethod, we
cannot directly taint it (i.e., values returned by w.a) since it contains
other untainted values, doing so might result in many false posi-
tives. However, if we neglect the tainted values stored, we might
omit to traverse control flows of interest (i.e., step 4 ).

The discontinuity in data flowsmainly stems from using globally-
accessible instances and inter-component communication (ICC). In
particular, ClipboardScope tackles this issue by considering three
cases, i.e., static fields, SharedPreferences, and Intent, which we
found prevalent in apps from the preliminary study. Unlike common
instance fields in an object, which can be referred to by This in class
methods and thus traceable to the object’s construction site, a static
field, however, is shared across all instances of a particular class and
requires no instantiation, making the on-demand tracking unable
to cover these data flows. To address this issue, in ClipboardScope,
once a static field is tainted, we flood the taint to all references
of this field in the program to rebind the discontinuous data flow.
Therefore, in the example from Figure 1, though we miss the control
flow from step 7 to 9 , by directly propagating the tainted static
field i.b, the data flow is reconnected.

.entry i.d(arg3)

v0_3 = new c(v0_2)

v1.post(v0_3)

.entry c.run()

v1 = this.a

v2.writes(v1)

v0_2

v0_3.a

v0_3.a

this.a

v1

v1

(a) Handling asynchronous function calls.

.entry A.onText...Item(arg1)

w.c(v1, “temp_clip”, v0)

i.a(v1, “temp_clip”)

.entry w.c(arg1, arg2, arg3)

v3.put(arg2, arg3)

v0

arg3

arg3

temp_clip

temp_clip

.entry i.a(arg3, arg4)

v0 = w.a(arg3, arg4)

v1 = new j(arg3, v0)

arg4

arg4

.entry w.a(arg1, arg2)

v1 = v0.getString(arg2)

return v1

arg2

arg2 v1

v1

v0

v1.b

(b) Reconnecting discontinuous data flows.

Figure 3: A simplified illustrative figure of the IDFG con-
structed by ClipboardScope from portions of the code of Fig-
ure 1. The dotted blue edges denote the backward tracing
for (a) the entry of the targeted run function invoked by the
asynchronous function call and (b) the hard-coded key value.
The red edges represent tainted paths. The search for the key
of interest is pinpointed by the blue edges, from which the
tainted value is resumed by getString in (b).

As for SharedPreferences and Intent, although they are used
for different purposes, they manage data in key-value pairs (e.g.,
putString and getString for SharedPreferences, and putEx-
tra and getStringExtra for Intent). Therefore, the first step is
identifying the key value of interest such that the site retrieving
these data can be located. In Android programs, both structures
use string-type keys, and thus we must resolve the string value by
backward slicing. In particular, we only target hard-coded string
values since it is used in most apps2 and maintains the balance
between performance and overhead. Once the value is resolved,
ClipboardScope searches it over the program, follows the ICFG to
the targeted function (e.g., getString), and reconnects the data
flow by tainting the returned value with the key.

4.3 Execution Sequence Analysis
Having extracted the execution sequence, ClipboardScope recog-
nizes these clipboard operations via their three phases, i.e., Clip-
board Content Validation, Text Content Filtering, and Destination
Identification, and classifies them into four categories:
(I) “Spot-on” operation. The clipboard facilitates the flow of
copied text within and across different apps. When users copy
text to the clipboard and navigate to another app with an input box,
the app is prompted to retrieve the copied text from the clipboard.
Therefore, an app’s primary task is to display the clipboard data on
the screen without any additional operations. We refer to this task
as "spot-on" as it accurately and efficiently displays the copied text.
(II) “Grand-slam” operation. In this case, the clipboard text might
be examined with equivalence comparisons to guarantee that it is
2We manually analyze 300 apps with these data structures, and only one app uses the
time the data is stored as the key.
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Item Value
# Apps tested 2.2 million

# Apps accessing the clipboard 185,423
# Apps with clipboard text manipulations 26,201

# Apps with Spot-on 23,948
# Apps with Grand-Slam 848
# Apps with Selective 1,075

# Apps with Res. Form. Val. only 743
# Apps with Rig. Form. Val. 332

# Apps with Cherry-Pick 330
# Apps with Res. Form. Val. only & Text Ext. 201
# Apps with Rig. Form. Val. & Text Ext. 129

Table 2: Overall statistics of the evaluated app.

non-empty and a new one. For instance, a customized IME app can
first check whether there are contents existing on the clipboard
and then send out the content if it is not the same as the lastly-
kept one after each time the user finishes inputting. The most
important characteristic of these behaviors is that the compatibility
examination is not involved in the execution sequence, meaning
that no functionalities in the app rely on any information from
the clipboard. Therefore, this operation mainly aims at storing the
whole copied text in the clipboard locally or sending them out to
the remote server, and we call it “grand-slam”.
(III) “Selective” operation. To identify whether the text on the
clipboardmeets the requirement of curtain purposes, the app should
conduct the compatibility examination. In general, apps may check
the existence of some identifiers (e.g., contains) or the compati-
bility to some regulated formats (e.g., matches). For example, an
auto-generated sharing text from a shopping app can be “Check
out ... from our website! link: ...,” where the phrase “link:” can be
regarded as an identifier of the link processable in the target app,
which might be used to request the corresponding webpage. Unlike
the “grand-slam” operation, this operation is “selective” because it
seeks certain keywords.
(IV) “Cherry-pick” operation. Similar to the “selective” operation,
some apps may only need a specific part of the copied text in the
clipboard to implement their advanced functionality. Consequently,
besides validating the format of the clipboard text, which is similar
to the “selective” operation, these apps have to manipulate the
text to extract their interested part of the text and take further
actions on these parts only. For example, a download helper app
might conduct a continuous check on the clipboard to identify
whether there is a magnet URL; if yes, it automatically downloads
the content shared via this URL. The app might conduct a rigorous
format validation to verify that the clipboard text is started with the
identifiable phrase “magnet:?” using the startsWith function, and
then use the information following the “magnet:?” only to initiate
the downloading process. Considering this feature, we call these
operations “cherry-pick”.
5 APP ANALYSIS
5.1 Experimental Setup

Dataset. In this work, we wish to analyze all apps available in
Google Play, the official Android app market, to have a better un-
derstanding. Unfortunately, we encountered many challenges in

(a) CDF of app installations. (b) Data-flow destinations.
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Figure 4: Overall statistics of the inspected apps.

crawling all apps from Google Play because of various restrictions.
Interestingly, we find another well-maintain repository, Andro-
Zoo [2], that not only contains the most up-to-date apps from
Google Play but also provides the older versions of almost every
app. Considering this dataset has been used in many similar studies
and is friendly for downloading, we crawled the whole repository,
filtered duplicate apps to keep the up-to-date version only, and
cross-checked with Google Play to exclude those off-shelf apps. As
such, we have created a dataset of 2.2 million apps in total as of
June 2022. Next, we leverage the system APIs that an app must
invoke to access the clipboard, e.g., getPrimaryClip, to find apps
we are interested, and finally identified 185,423 apps.
Testing Environment. ClipboardScope is implemented atop Flow-
Droid [5], which is a mature static analysis framework in Android
app analysis, with a suite of novel techniques for optimizations.
The entire experiment was conducted on a Linux server running
Ubuntu 16.04 equipped with two Intel Xeon E5-2695 CPUs, CPU 48
cores in total, alongside 96 GB memory and 20 TB storage.

5.2 Overall Results
As presented in Table 2, there are 185,423 out of 2.2 million apps
(8.4%) that were found accessing the system clipboard (i.e., in-
voking ClipboardManager.getPrimaryClip). Among these apps,
29,116 apps (15.7%) failed in the analysis due to exceeding the 10-
minute timeout, which complies with the findings in recent works
[7, 29, 42] that the time andmemory consumption for static analysis
atop FlowDroid on new apps significantly increases. Nevertheless,
ClipboardScope achieves a much lower failure rate, compared with
these similar works (40%–70%). Among the 156,307 successfully-
analyzed apps, 26,201were found to attempt to manipulate the
clipboard text. The remaining 130,106 apps invoking Clipboard-
Manager.getPrimaryClip are mostly dead-code from third-party
SDKs and libraries or aiming at other MIME types clipboard data,
which are out of the scope of this paper (Section 3.4). Among the rest
26,201 apps, we further filter out 2,253 apps containing data-flows
to local storage I/O or networking APIs, including 848 apps with
grand-slam (GS), 1,075 (743 only contain resilient format validations
and 332 contain rigorous validations) apps with selective (ST ) and
230 (201 only contain resilient format validations and 129 contain
rigorous validations) apps with cherry-pick (CP).

We have summarized the popularity of these 2,253 apps accord-
ing to their categories, which are shown in Figure 4(a) as CDF. It
can be observed that the number of installations occupies a wide
range. Specifically, 405 (47.8%), 314 (29.2%), and 156 (47.3%) apps
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Data Dest.

# Installs Category Package Name SP D
B

N
W

W
F

Tr.

100,000,000 – 500,000,000 Comm. com.tencent.mm ● ❍ ❍ ❍ ●

50,000,000 – 100,000,000 Product. ridmik.keyboard ❍ ● ❍ ❍ ●

50,000,000 – 100,000,000 Personal. com.cutestudio.neonledkeyboard ❍ ❍ ❍ ● ●

50,000,000 – 100,000,000 Personal. com.flashkeyboard.leds ● ❍ ❍ ❍ ●

50,000,000 – 100,000,000 Tools fast.phone.clean ❍ ● ❍ ❍ ●

10,000,000 – 50,000,000 Entmt. com.mistplay.mistplay ❍ ❍ ● ❍ ❍

10,000,000 – 50,000,000 Tools com.facemoji.lite ❍ ● ❍ ❍ ●

10,000,000 – 50,000,000 Lifestyle com.aboutjsp.thedaybefore ❍ ● ❍ ❍ ●

10,000,000 – 50,000,000 Lifestyle net.milkdrops.beentogether ❍ ● ❍ ❍ ●

10,000,000 – 50,000,000 Personal. com.jb.gokeyboardpro ● ❍ ❍ ❍ ●

Table 3: Detailed results of top inspected apps with grand-
slam operations: Data Dest. for data destination, Tr. for trig-
ger type; SP for SharedPreferences, DB for SQLiteDatabase,
WF for local file, and NW for network; ● for presence, ❍ for
absence in Data Dest. column; ● for automatic, and ❍ for
user-triggered in Tri. column.

of the GS, ST and CP gain over 10,000 installations. When consid-
ering the cases with over one million installations, the numbers
become 75 (8.8%), 78 (7.3%), and 25 (10.9%) in the three categories,
respectively, indicating the extensive influence.

As for the final data-flow destinations in an app, as shown in
Figure 4(b), we have summarized them into four categories, i.e., leak-
ing via inputting to SharedPreferences instances (SP), storing to
SQLiteDatabase objects (DB), writing to files on the local storage
(WF), and transferring through the network (NW). Most apps store
the clipboard text locally, mainly via file writing and operations
on SharedPreferences objects. A non-negligible amount of apps
directly store the clipboard text in the database, which is suspicious.
Although only a few apps transfer data through the network, some
are very popular, with over ten million installations. The statistics
shown above indicate a concerning situation in clipboard privacy.

5.3 Detailed Results
Since most apps are classified as spot-on apps that only display
clipboard data on the screen, in this section, we primarily focus on
the other three categories because they potentially contain privacy
leakages. As such, we manually examined the top apps in each
category in order to better understand the use of clipboard data.
Apps with grand-slam operation. Apps in this category directly
store or transfer clipboard text without performing any format
validations, which can lead to possible privacy leaks. We discovered
a list of popular apps with such behaviors, indicating a concerning
situation. To understand how this happens, we manually inspected
ten appswith over tenmillion installations and presented the results
in Table 3. Our findings are summarized as follows:
• Continuous clipboard inspecting is prevalent.We have un-
covered the trigger scenario for these behaviors with our best
effort. Specifically, one app leverages the clipboard to implement
the launch redirection functionality by sending the account lo-
gin data through the Internet. Besides this, all nine other apps
inspect the clipboard data in the onPrimaryClipChanged call-
back method. It is each time when an onPrimaryClipboardLis-
terner is registered and the primary clip data is changed (e.g.,

copying a new text). Therefore, in these cases, apps can continu-
ously monitor the clipboard and keep the latest data whenever it
is updated automatically without any user-involved interactions
(e.g., performing the “paste” action).

• Clipboard data is transferred without encryption. Through
our investigation, none of the top apps listed in Table 3 consider
adopting any encryption algorithms to encrypt the clipboard data
when being stored locally or sent to the outside. Only one IME
app was found to use the SHA-256 algorithm on the clipboard
data before storing it.

• Apps might maintain clipboard history.We have observed
that four apps intentionally develop a secret list for historical
clipboard data. This can be achieved by maintaining an Array in-
stance in the app, and there is always a size limit (e.g., 10). Despite
the fact that some functionalities related to these data might facil-
itate the design purpose of the app, e.g., a customized keyboard
app records the clipboard history for fast input suggestions; it
inevitably increases the vulnerabilities in users’ privacy.

Apps with selective operations. Given format validation con-
ditions discovered in the execution sequence, to understand what
types of content the app tries to access and the format validations
used, we have manually investigated the top 5 apps with selective
operations. Table 4 shows the results, and we have summarized
three types of contents that these apps attempt to verify:

• URL. Apps might retrieve URLs from the clipboard. To verify
whether the copied text is of interest, these apps mainly use the
contains function to check the existence of specific prefixes, e.g.,
“http://” for initializing a network connection to other servers,
and “taobao.com” for directing to a shopping webpage. In addi-
tion, some apps leverage stricter criteria to verify that the text is
started with certain sub-strings, such as verifying some special
prefixes that can be used as identifiers (“EASEMOBIMG” in a
Productivity app). Moreover, besides using fixed identifiers, we
have found that two shopping apps also leverage periodically-
updated regex patterns or strings to verify the text, indicating
that stricter criteria are adopted in these apps.

• Code. Identifying the existence of any code (e.g., validation code,
invitation code, and security code) on the clipboard is a common
functionality found in many apps. To validate that the copied
text is a code string, apps mostly resort to APIs related to regular
expression matching. According to our investigation, a photogra-
phy app checks the existence of a code sequence by verifying the
existence of a series of numbers, which can be done by match-
ing the “[0-9]+” regex pattern (finding whether there are one or
more consecutive digits). Also, this app is found to check on the
existence of the string “][”, which might be a special indicator of
the expected text containing the code.

• Character. Another set of apps verifies the existence of certain
characters. Dislike the above two categories where apps attempt
to verify whether certain contents exist in the text, in this case,
apps act differently to the validation results. For instance, we
have found that a dictionary app tries to ensure that the clipboard
text contains no special characters, such as “@”, “$”, and digits,
which could be used as criteria for detecting English words.
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Data Dest.

V.M. # Installs Category Package Name Format Validation SP D
B

N
W

W
F

Cont.

Re
s.
Va

l.

100,000,000 − 500,000,000 Product. cn.wps.moffice_eng C{"ftp://", "http://", "https://"} ● ❍ ❍ ❍ URL
10,000,000 − 50,000,000 Books com.hdictionary.bn C{"@", "$"},M{"[0-9]"} ● ● ❍ ❍ Char.
5,000,000 − 10,000,000 Art com.behance.behance C{"<iframe", ">"} ❍ ❍ ● ❍ URL
5,000,000 − 10,000,000 Photo. com.boo.facecam C{"]["},M{"[0-9]+"} ● ❍ ❍ ❍ Code
1,000,000 − 5,000,000 Shopping com.daigou.sg C{"taobao.com", "http://", "tmall.com". . . },M{Dynamic Pattern} ● ❍ ❍ ❍ URL

Ri
g.
Va

l.

100,000,000 −- 500,000,000 Product. com.transsion.carlcare S{"EASEMOBIMG"} ● ❍ ❍ ❍ URL
10,000,000 −- 50,000,000 Tools com.ume.browser.international S{"http://", "rtsp://", "https://"} ● ❍ ❍ ❍ URL
10,000,000 −- 50,000,000 Tools tweeter.gif.twittervideodownloader I{"https://twitter.com", "https://mobile.twitter.com", ...} ● ❍ ❍ ❍ URL
5,000,000 −- 10,000,000 Shopping com.asda.android S{Dynamic_String} ❍ ❍ ❍ ● URL
1,000,000 −- 5,000,000 Arcade com.ace.shell.production S{"http://", "https://"} ❍ ❍ ● ❍ URL

Table 4: Detailed results of top inspected apps with selective operations: V.M. for validation method, Res. Val. for resilient
validation, and Rig. Val. for rigorous validation; C for contains condition,M for regular expression matching, S for startsWith
condition, E for endsWith condition, and I for indexOf checking; Data Dest. for data destination, SP for SharedPreferences, DB
for SQLiteDatabase, WF for local file, NW for network, ● for presence, and ❍ for absence; Cont. stands for content.

Data Dest.

V.M. # Installs Category Package Name Format Validation Text Extraction SP D
B

N
W

W
F

Cont.

Re
s.
Va

l.

50,000,000 − 100,000,000 Finance com.santander.app C{"0014BR.GOV.BCB.PIX"} SS{(s,e), (0, 11), (11, 22), (22, 33), ...} ● ❍ ❍ ❍ Setting
500,000 − 1,000,000 Parent. com.moms.momsdiary M{URL_Format} SS{(s, e)} ● ❍ ❍ ❍ URL
100,000 − 500,000 Auto. com.gsd.carmeets C{"instagram", ""https://www.instagram.com/p/"} SS{(0, e)} ❍ ❍ ● ❍ URL
100,000 − 500,000 Business ru.petrolplus.mobileapp M{"[0-9]+"} SS{(s, e)} ❍ ❍ ❍ ● Code
100,000 − 500,000 Education com.sapienmind.bigmd C{"\\\’", "\\\\", ...} SS{(0,100)} ❍ ● ❍ ❍ Text

Ri
g.
Va

l.

100,000,000 − 500,000,000 Tools com.mi.globalbrowser S{"about:", "data:", ...}, E{"."},M{URL_Format} SS{(s, e)} ● ❍ ❍ ❍ URL
100,000,000 − 500,000,000 Card com.matteljv.uno S{"omnisdk"},M{"omnisdk://"} OS{"extInfo", "linkID"} ● ❍ ❍ ❍ Setting
10,000,000 − 50,000,000 Tools me.skyvpn.app I{"/skyvpn"}, C{"skyvpn://install?", "inviteKey", ...} SS{(0, e)} ❍ ❍ ● ❍ URL
10,000,000 − 50,000,000 Product. com.tf.thinkdroid.viewer S{"**writeClipboard**" + pid} SS{(s, e)} ❍ ❍ ❍ ● URL
5,000,000 − 10,000,000 Business com.fedex.ida.android S{"023"},M{"^[a-zA-Z0-9]*$"} SS{(2, 14)} ● ❍ ❍ ❍ Code

Table 5: Detailed results of top inspected apps with cherry-pick operations: V.M. for validation method, Res. Val. for resilient
validation, and Rig. Val. for rigorous validation; C for contains condition,M for regular expression matching, S for startsWith
condition, E for endsWith condition, I for indexOf checking, SS for subString extraction, and OS for optString extraction; s and
e mean the starting and ending index of the extracted string; Data Dest. for data destination, SP for SharedPreferences, DB for
SQLiteDatabase, WF for local file, NW for network, ● for presence, and ❍ for absence; Cont. stands for content.

Apps with cherry-pick operations. We have manually analyzed
the top 5 popular apps with cherry-pick operations in each valida-
tion method, i.e., performing resilient format validation only and
adopting rigorous format validation before storing or transferring
the clipboard data. The results are summarized in Table 5. Note that,
we found that apps mostly adopt self-defined ways to identify the
starting or ending indexes of the substring of interest, i.e., a VPN
app is found first to replace the interested prefix with an empty
string and then extract the component between 0 and the index of
the ending character “#”; we denote the range to be (s, e) since the
two indexes are not fixed. Compared with the findings in selective
operations, we have the following insights:
• URL extraction is the most overlapped functionality. Apps
with this purpose always start by finding special identifiers simi-
lar to (II). Also, we found apps using well-defined regex patterns
to match the interested part of the URL, which we denote as
“URL_Format” 3. After that, the text is truncated by extracting
portions of the content, and only the captured part is kept. For

3An example of such regex patterns is “(?:̂|[\\W])((ht|f)tp(s?):\\/\\/|www\\. |m\\.)(([\\w\\-
]+\\.){1,}?([\\w\\-. ]+\\/?)* [\\p{Alnum}.,%_=?&#\\-+()\\[\\]\\*$ @!:/{};\’]*)”, which is found
in a parenting app.

instance, an automobile app extracts the post ID from the social
media URL and performs quick sharing.

• Extracting detailed setting configurations.With the text con-
taining setting information, we have observed that some apps
might leverage text extraction to filter out detailed configura-
tions denoted by different sub-fields. For instance, several apps
directly convert the extracted strings to JSON objects and invoke
optString to obtain the corresponding settings. One finance app
attempts to extract QR code settings by capturing information
from multiple fixed text positions. Another example is a Business
app that first verifies the area code “023” on the text and then
automatically extracts the 13-digit phone number.

6 DISCUSSION AND FUTUREWORK
6.1 Effectiveness of ClipboardScope
We have investigated apps with top installs in each category (40
in total) to evaluate the accuracy of ClipboardScope because it re-
lies on static analysis. Specifically, we decompile and inspect the
Java code, and then check the execution sequences inside each
app to see whether they are consistent with the extracted ones
and then further verify whether they are correctly categorized. As
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a result, we found three false positives, which are caused by the
partial object-sensitivity, where the control flows are redirected
to methods inside the unreachable-in-practice sub-classes pointed
by the abstract references. In the remaining 37 apps with execu-
tion sequences correctly extracted, we have further identified two
cases flagged as wrong categories. The first case is an app that
first invokes subString with (0,7) and then compares its equiva-
lence with “http://” to verify a URL, which is the same as calling
startsWith; however, the subString is mistakenly regarded as a
text extraction process, and the app is categorized as cherry-pick
instead of selective. Another app first replaces some unwanted
characters and then uses the match function to verify that they are
all replaced. Then it truncates the text to get the first 100 characters
with subString and inserts it into the database. This should be a
grand-slam case while ClipboardScope classifies it as cherry-pick.
Therefore, ClipboardScope achieved an accuracy of 87.5%.

To evaluate the effectiveness of the two proposed components to
handle asynchronous function calls and discontinuous data flows,
we disabled them separately to evaluate their performance. We
appliedy them on the 2,253 apps identified to be either grand-slam,
selective, or cherry-pick and checked whether the execution se-
quences in these apps could be uncovered. In particular, when the
asynchronous function redirection was disabled, we could discover
the target execution sequences in 69.9% (593/848) of the grand-
slam, 82.0% (881/1,075 ) of the selective, and 95.8% (316/330) of the
cherry-pick apps. The proportions became 83.7% (710/848), 83.0%
(892/1,075 ), and 47.3% (191/330) when disabling the data flow re-
connection component. Having these results, we conclude that
the proposed two solutions in our static taint analysis technique
contribute significantly by raising the success rate in uncovering
execution sequences by 20.6% and 20.4%, respectively.

6.2 Limitations and Future Work
ClipboardScope is built atop static analysis that may inevitably result
in inaccuracy. First, false positives inevitably exist in the reported
results. The main reasons are two-fold: 1) our tool routes data flows
to all sub-classes pointed by virtual references, and 2) we flood
taints stored in global variables without fully tracing their execution
contexts. These two policiesmight falsely include unreachable paths
in the results. Second, our tool only checks the appearance of target
APIs irrespective of their combinations, which might lead to false
categorizations. Third, the tool now only focuses on the text data
stored in the clipboard and analyzes clipboard usage operations at
the Java code level in Android apps; therefore, its current version
might miss some execution sequences of interest. As such, the
improvement of the static taint analysis and enlarging the scope of
ClipboardScope to other platforms are our future works.

6.3 Prevalence of SharedPreferences
During this work, we find a prevalent usage of SharedPreferences
in the process of clipboard-related operations. To better understand
the rationale behind this practice, we conducted a case study on
623 apps with over 5,000 installations with clipboard data inserted
to SharedPreferences objects.

Specifically, we investigated whether data stored in these objects
is further retrieved somewhere in apps and recorded their reachable

Grand-slam 228

Selective 346

Cherry-pick 224

5000+ 141

10000+ 295 

50000+ 74

100000+ 134

500000+ 40

1000000+ 114

Display 198

Dup. Check 233

UP 356

WF 8
NW 3

Category # Installs Destination

Figure 5: Data flows in different categories from SharedPref-
erences objects in apps with more than 5,000 installations.
Each data flow is encoded in a tuple (Type, Installations, Des-
tination): Dup. Check for duplication check, WF for local file,
NW for network, UP for cases unprocessed in this study.

data destinations. Note that there can be more than one data flow of
interest existing in an app, so the number of reported data flows is
more than that of the apps. As shown in Figure 5, there are 267 apps
containing 442 data flows directing to the destinations where the
data is displayed on the screen, stored locally, and sent to the out-
side. In addition, we have discovered that a total of 198 apps display
the clipboard text to app users, and 233 apps (87.3%) use the stored
text to perform equivalence comparisons with the newly inspected
clipboard data for duplicate checking. Interestingly, we found one
clipboard helper app with grand-slam operations equipped with the
functionality of maintaining historical clipboard data in a Shared-
Preferences object that has a backup function to write the stored
data to a file in the local storage. Moreover, a VPN app with selec-
tive operations is found to encode the stored clipboard text in its
SharedPreferences object into a URL and post a network request.

It can be observed from the above results that, the SharedPref-
erences object often serves as a “global variable” to perform dupli-
cate checking in most apps since contents stored in these objects
are accessible in the whole app; however, unlike the static field with
the same functionality, data in the SharedPreferences object is
kept as a hard-copy of file in the storage. Considering the sensitivity
of clipboard text, this behavior makes the user privacy vulnerable.

In addition, we have discovered 356 apps that do not further
process the clipboard data after storing it. We randomly selected
ten apps and investigated them since they account for a large pro-
portion. We found four apps only storing the contents without
further usage, which is redundant dead code. The other three apps
do not use hard-coded key values: one app uses the timestamp as
the key, one app constructs the key using the generated device ID,
and one app generates the key with values stored in other key-value
structures. We failed to get the correct keys since ClipboardScope
only backtraces for hard-coded keys. Two apps use tokens stored
in the clipboard to generate device identifiers, which are then used
to create names for logs or cached images. They are labeled as
unprocessed since we do not record file-constructing APIs. One app
retrieves the data and stores it in a Map object, a function parameter.
This data flow is lost since ClipboardScope only tracks the returned
value at the return site for efficiency considerations.
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6.4 Legitimate Use of the Clipboard
By analyzing the inspected 30 apps with grand-slam, selective, and
cherry-pick operations with top installs, we found that most apps
leverage the clipboard for legitimate functionalities, while their
implementations might leave vulnerabilities in user privacy.

For apps in the grand-slam category, seven out of ten apps cache
historical clipboard data locally for input assistance in customized
keyboards. These are necessary functionalities in apps; however,
only one of these apps chooses to encrypt the data before storing
it, leaving potential on-device privacy issues. There is one popular
communication app that maintains the latest clipboard data in a
SharedPreferences object without using it, which is redundant
and puts the user’s privacy at risk.

As for apps with selective and cherry-pick operations, they use
clipboard data with highly-overlapped purposes (e.g., identifying
URLs and extracting characters). Most of the inspected apps cache
the data for duplicate checking. Some education apps (e.g., dictio-
nary apps) might store historical data for learning purposes. These
clipboard monitoring behaviors are designed for necessary func-
tionalities. However, it is possible for these validation methods to
fail in classifying information of interest with few simple condi-
tions (e.g., only validating the “http” prefix), leading to recording
irrelevant content and exposing users’ privacy.

6.5 Clipboard Privacy Protections in Android
Starting with Android 10, only the default IME or apps in the fore-
ground can access the clipboard [12]. Blocking background access
behaviors is far from secure since apps can still retrieve clipboard
data in the foreground without users’ consent. Furthermore, accord-
ing to Google, on January 2023, 32% of devices were still running
Android 9 or lower [11]. In addition, Android 12 and higher can
show a toast message to notify users when the app calls getPri-
maryClip [13]. However, on the one hand, this requires a tedious
switch-on process, which is easy to be neglected by most users.
On the other hand, Android will not show the toast message if the
app repeatedly accesses the clipboard data. Considering that this
prompt does not tell the user what clipboard data is being accessed
by the application, the user will usually be confused and ignore it.

6.6 Ethics and Responsible Disclosure
We have taken ethical considerations seriously. Although this work
does not primarily focuses on security issues, we have contacted
Google Play and developers of apps that may contain security issues
to verify our findings. We have not disclosed any findings in this
paper to any party yet except the relevant parties to who we are
working closely to address issues with our best efforts.

7 RELATEDWORK

Static Taint Analysis for Vulnerability Discovery. Uncovering
malicious behaviors in mobile apps has been a long-lasting and sig-
nificant research topic and there is a large body of works proposing
promising solutions, such as novel unpacking strategies [47–50, 60],
traffic analysis [31, 34, 52], and side-channel exploitation [32, 55, 56]
Moreover, there is another branch of work focusing on leverag-
ing static taint analysis, a highly-scalable technique, to uncover
privacy-intrusive behaviors in apps [17, 23, 28, 35]. In past years,

several generic tools [5, 18, 27, 40] have been developed to track sen-
sitive data flows for vulnerability discovery. More specifically, some
works focus on revealing privacy leaks from various aspects, in-
cluding network communications [10, 30, 62], cloud services [4, 63],
location services [33, 41, 59, 61], mini-programs [38], and resource
operations [9, 20, 44, 51]. Different from these works, in this study,
we focus on uncovering privacy leaks from the clipboard on smart-
phones on a large scale, which has not been well studied.

In addition, previous works have tried to discover malicious
app behaviors by analyzing the code semantics, such as analyzing
code embedding [3, 8, 14], code similarity distance [46, 64] and
function callstacks [22, 45, 54]. Moreover, Zhao et al. [58] proposed
InputScope to uncover hidden app secrets by analyzing the data
types and code dispatch behavior during input validations. Inspired
by these works, ClipboardScope uncovers clipboard-related usages
by investigating execution sequences in apps.
Clipboard Data Privacy. In previous research, the clipboard data
has been shown to contain highly sensitive information [1, 16, 24,
26, 37, 53, 57]. In addition, while numerous attacks have shown to
be feasible on the data [21, 25, 53, 57] in a small set of apps, which
indicates the user privacy on the clipboard can be compromised
for malicious purposes. Although several possible countermeasures
were proposed, such as enforcing permission controls [43] and data
encryption [6], their deployment has not been accomplished yet. Re-
cent work [39] has exposed the existence of clipboard privacy leaks
on a small scale by incorporating code analysis and human-effort
examination, which only shows the tip of the iceberg. Therefore,
we propose ClipboardScope, which can automatically analyze the
clipboard use in apps and expose possible privacy leaks, to arouse
more community attention to this severe problem.

8 CONCLUSIONS
This study takes the first step toward understanding the current
state of clipboard usage in mobile apps at scale. It proposes an auto-
matic tool, ClipboardScope, that leverages the principled static pro-
gram analysis to classify and uncover four primary clipboard data
usage operations (i.e., spot-on, grand-slam, selective, and cherry-
pick) in mobile apps at scale by defining a usage as a combination
of two aspects of the corresponding code, i.e., how the clipboard
data is validated and where does it go (the end of data-flow). Clip-
boardScope is evaluated on 26,201 out of a total of 2.2million mobile
apps available on Google Play as of June 2022 and identifies 23,948 ,
848 , 1,075 , and 330 apps containing the four primary operations,
respectively. Moreover, this study also uncovered that the Shared-
Preferences object is prevalently used to store historical data,
which might establish an unnoticeable privacy leakage channel.
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