
An Empirical Study of Proxy Contracts
at the Ethereum Ecosystem Scale

Mengya Zhang∗†, Preksha Shukla‡†, Wuqi Zhang§†, Zhuo Zhang§¶, Pranav Agrawal‡, Zhiqiang Lin∗,
Xiangyu Zhang§, Xiaokuan Zhang‡

∗The Ohio State University, ‡George Mason University, §Purdue University, ¶Offside Labs

Abstract—The proxy design pattern separates data and code
in smart contracts into proxy and logic contracts. Data resides
in proxy contracts, while code is sourced from logic contracts.
This pattern allows for flexible smart contract development,
enabling upgradeability, extensibility, and code reuse. Despite its
popularity and importance, there is currently no systematic study
to understand the prevalence, use scenarios, and development
pitfalls of proxies. We present the first comprehensive study on
Ethereum proxies. To gather a dataset of proxies, we introduce
PROXYEX, the first framework to detect proxies from bytecode,
achieving over 99% accuracy. Using PROXYEX, we collected
a dataset of 2,031,422 Ethereum proxies and conducted the
first large-scale empirical study. We analyzed proxy numbers
and transaction traffic to understand their current status on
Ethereum. We identified four proxy use patterns: upgradeability,
extensibility, code-sharing, and code-hiding. We also pinpointed
three common issues: proxy-logic storage collision, logic-logic
storage collision, and uninitialized contracts, creating checkers
for these by replaying historical transactions. Our study reveals
that upgradeability isn’t the sole reason for proxy adoption in
DApps, and many proxies present issues like storage collisions
and uninitialized contracts, which enhances the understanding of
proxies and guide future smart contract research on the devel-
opment, usage, quality assurance, and bug detection of proxies.

I. INTRODUCTION

Ethereum [1], [2] has emerged as one of the leading
blockchain platforms with Turing-complete smart contracts,
allowing for greater flexibility and functionality in developing
Decentralized Applications (DApps). As of February 2024,
the total Unique Active Wallets (UAW) on Ethereum reached
approximately 152.4 million, with a Total Value Locked (TVL)
across all Ethereum DApps at around $7.11 trillion [3].

Data and code of Ethereum smart contracts are closely
coupled in the same address. Moreover, the code of a contract
is immutable: it cannot be modified once deployed. Such char-
acteristic hinders the flexibility of developing smart contracts
and DApps, introducing constraints including restricted code
size [4], constrained functionality expansion, challenges in
reusing code, and obstacles in patching code, etc [5]. The
separation of code and data is deemed to be a preferred
practice of software design [6] to improve maintainability,
security, understandability, etc, and resolve the aforementioned
constraints of DApps.

Fortunately, to mitigate such limitations, the community has
proposed the proxy design pattern to achieve the separation
of code and logic. Proxy pattern separates data and logic

†These authors contributed equally to this work.

Invoke delegatecall()

A: User B: Proxy Contract
(Storage Layer)

C: Logic Contract
(Code Layer)

Fig. 1: Workflow of the proxy pattern.

implementation into two different contracts, namely proxy
contract and logic contract, respectively. Users of the DApp
interact and send transactions to the proxy contract, which
will use DELEGATECALL, a type of Ethereum Virtual Machine
(EVM) Opcode [7], to execute the code of the logic contract
on top of the data in the proxy contract, as shown in Fig. 1.
With the proxy design pattern, DApps may achieve: 1) up-
gradeability and code patching by replacing the DELEGATECALL
target (i.e., the address of the logic contract) with a new one,
2) extensibility with unlimited code size by delegating the
handling of some functionalities to other contracts, 3) code-
sharing by sharing the same logic contract among multiple
proxies, etc. We investigate and discuss the use scenarios of
proxy design pattern in §IV-B in detail.

Proxies are prevalent on Ethereum. We find that over
2,031,422 (3.25%) contracts on Ethereum adopt the proxy
design pattern. The popular usage of proxies underscores the
need to study how the proxy pattern fits in the requirement of
DApps, how developers implement proxies, and what kinds
of bugs and pitfalls may exist in proxies. To the best of our
knowledge, such a study is still absent. On the one hand,
Bodell et al. [8] and Salehi et al. [9] studied the upgradeable
proxies on Ethereum. However, they confine themselves to
upgradeable proxies, while we show that the proxy pattern
has several other use scenarios. On the other hand, Ruaro et
al. [10] proposed techniques to detect a specific type of bug
arising in proxies. Our study, in contrast, aims to facilitate
an comprehensive understanding of the proxy design pattern,
including various use purposes and development pitfalls.

To facilitate our study, we first propose a novel framework,
PROXYEX, to detect deployed proxies from bytecode at the
Ethereum ecosystem scale. We use PROXYEX to collect a
large-scale dataset of 2,031,422 proxies. We manually eval-
uate PROXYEX on randomly selected 1,000 contracts. Our
evaluation shows that PROXYEX can achieve over 99% proxy
detection accuracy, 100% precision and over 99% recall. These
evaluation results assure the quality of the dataset we collect
for the study and consolidate the observations and findings

we make. With the large-scale dataset of proxies, we conduct
the first systematic study on proxies on Ethereum, aiming to
answer the following research questions.

• RQ1: (Statistics) How many proxies are there and How
frequently are these proxies used on Ethereum? We mea-
sure the total number and the proportion of distinct proxies
on Ethereum, as well as the transactions invoking these
proxies, to obtain an overview of the popularity, usage,
and traffic of proxies.

• RQ2: (Purpose) What are the major purposes of imple-
menting proxy patterns for DApps? We manually inspect
a sample of proxies and propose a use-purpose taxonomy
of proxies. We also propose automated methods to detect
each type of proxy on a large scale from our dataset.

• RQ3: (Bugs and Pitfalls) What types of bugs and pitfalls
can exist in proxies? We summarize common pitfalls when
implementing proxies and design several pitfall checkers
leveraging historical transactions. We use the checkers to
detect bugs in all proxies in our dataset.

Findings. The major findings are as follows.

• There are four different use purpose of proxies: namely
upgradeability, extensibility, code-sharing, and code-hiding,
among which upgradeability proxies and code-sharing
proxies compose the majority.

• Over 19.54% proxies are non-upgradeable, i.e., their logic
contract, to which the code execution is delegated, cannot
be changed. Among the upgradeable proxies, 98.24% of
them have never been upgraded in history.

• The proxy contract and logic contracts should use the
contract storage consistently with the same semantic in-
terpretation; otherwise, severe bugs may occur.

• Developers often fail to initialize proxy or logic contracts
within the same transaction where the contract is deployed,
exposing a non-negligible attacking surface for proxies. We
have successfully identified a zero-day vulnerability putting
over $2M worth of assets at risk.

Contributions. Our study makes the following contributions.

• Proxy Detection and Dataset: We propose a novel frame-
work PROXYEX to identify proxies. We collect a large-
scale dataset of 2,031,422 real-world proxies on Ethereum
as well as their 172,709,392 transactions.

• Systematic analysis: We conduct an in-depth and system-
atic analysis of proxies, propose a taxonomy of proxies and
the implementation pitfalls, and make valuable observations
and implications on our collected dataset.

• Bugs and Pitfalls: We identify three common pitfalls in
proxies and conduct a semi-automated detection for such
pitfalls. We found a high-value zero-day vulnerability af-
fecting assets over $2M.

Data availability. We released the implementation of PROX-
YEX and all data in https://github.com/OSUSecLab/ProxyEx.

II. PRELIMINARIES

A. Ethereum Basics

Each smart contract consists of code and data storage. The
code is immutable once deployed. Users invoke functions of
the contract code, which may load or modify data in the con-
tract storage. The storage is a low-level data store, comprised
of a list of storage slots indexed with an integer between 0 and
2256. Each storage slot may store 32 bytes of data. Solidity,
the most popular programming language of smart contracts,
allows developers to declare high-level state variables of a
contract, which internally encodes and stores the value in
the low-level storage. Users interact with smart contracts by
sending transactions. Each transaction may specify a function
(with an 4-byte function signature hash) to be called. If the
specified function is not found, a special fallback function in
the contract will be executed. Functions in one smart contract
may call other smart contracts. CALL and DELEGATECALL are
two different calls between contracts. CALL invokes the code
of another contract and execute in the context of the callee
contract (i.e., modifying the callee’s storage). DELEGATECALL
fetches the code of another contract and execute in the context
of the caller contract (i.e., modifying the caller’s storage).

B. Proxy Patterns

The proxy pattern (Fig. 1) involves a proxy contract
interfacing with users and a logic contract holding the
actual implementation code. The proxy contract leverage the
DELEGATECALL opcode of Ethereum Virtual Machine (EVM)
to delegate the code execution to the logic contract, while
the data are kept in the storage of the proxy contract. By
separating the proxy contract and the logic contract, it enables
applications such as upgradeability smart contract, where
the logic contract can later be upgraded to a new version,
and code-sharing contracts, where multiple proxy contracts
are delegating the execution to the same logic contract. We
discuss more use scenarios of proxy patterns in §IV-B.
EIP-1967: Proxy Storage Slots [11] is a standard on
Ethereum to specify designated storage slots where specific
information of proxies should be stored. One example
information in proxy is the address of the logic contract.
EIP-1967 defines the storage slot for logic contract address as
uint256(keccak256(’eip1967.proxy.implementation’))-1),
which is ensured not allocated to any high-level state variables
of the contract, thus preventing storage collsions. We discuss
storage collision pitfalls in detail in §IV-C. EIP-1967 also
specifies a standard storage slot for other proxy information,
such as the admin address. EIP-1967 facilitates proper
extraction and display of proxy information by clients like
block explorers (e.g., Etherscan [12]) for end users, while
logic contracts can choose to utilize it optionally.

III. DATA COLLECTION

A. PROXYEX

To facilitate data collection, we design a system, PROXYEX
(shown in Fig. 2), to detect proxy contracts from bytecode

2

https://github.com/OSUSecLab/ProxyEx

Function Identifier Logic Contract ExtractorProxy Scanner

Ethereum

Bytecode Traces Function

Logic

Proxy

Fig. 2: The workflow of PROXYEX.

Block 0x86
0x86 JUMPDEST
0x87 CALLVALUE
0x88 DUP1
0x89 ISZERO
0x8a PUSH2 0x92
0x8d JUMPI

(a) Opcode sequence.

Block 0x86
0x86:
0x87: v87 = CALLVALUE
0x88:
0x89: v89 = ISZERO v87
0x8a: v8a = 0x92
0x8d: JUMPI v8a, v89

(b) IR.

…

Block 0x86
0x86:
0x87: v87 = CALLVALUE
0x88:
0x89: v89 = ISZERO v87
0x8a: v8a = 0x92
0x8d: JUMPI v8a, v89

Block 0x8e
0x8e: v8e = 0x0
0x90:
0x91: REVERT v8e, v8e

Block 0x92
0x92:
0x93:
0x94: v94 = 0xd5
0x97: v97= 0x4
…
0xa4: JUMPI va1, va0

…

(c) GCFG with IR. Solid line: fall-through edge; dotted line: jump-related edge.

Fig. 3: Illustration of the first three steps of Function Identifier.

and extract logic contract addresses from transactions. It has
three major components: 1) Function Identifier, which extracts
function-based control flow graphs (CFGs) based on register-
based intermediate representation (IR), 2) Proxy Scanner,
which detects proxy contracts based on bytecode analysis,
3) Logic Contract Extractor, which utilizes transaction-level
analysis to extract Logic contracts.

1) Function Identifier: Given a smart contract bytecode,
Function Identifier identifies the function boundaries and ex-
tracts function-based control-flow and data-flow graphs as
follows. This is necessary for detecting proxy contracts, since
we need to 1) identify the fallback() function, which is a
necessary condition for proxy contracts; and 2) analyze cross-
function calls, as the fallback() function may call another
function to execute DELEGATECALL.
Step 1: Constructing basic blocks from Opcodes. First,
Function Identifier disassembles the bytecode into a sequence
of Opcodes. After that, Function Identifier divides the Opcode
sequence into basic blocks using control-flow transfer Opcodes
as delimiters. There are two types of control-flow transfer
Opcodes: 1) JUMP-related Opcodes, including JUMP, JUMPI,
JUMPDEST; JUMP and JUMPI indicate the end of a block,
while JUMPDEST denotes the beginning of a block. 2) STOP-
related Opcodes, including STOP, RETURN, REVERT, INVALID and
SELFDESTRUCT; they all indicate the end of a block. Note that
while call-related Opcodes such as CALL and DELEGATECALL are
control-flow transfer Opcodes, they are not used as delimiters
for creating basic blocks, since there is no callee information
available from the bytecode. One example is shown in Fig. 3a.
Step 2: Converting the Opcode sequence into register-based
intermediate representation (IR). Since EVM Opcodes are
stack-based operations, extracting control-flow and data-flow
information can be challenging. To facilitate further analysis,
we build upon Vandal [13], a static program analysis frame-
work for Ethereum smart contract bytecode. Vandal decom-
piles EVM bytecode into a register-based IR that encodes the
program’s control flow graph. We chose Vandal due to its
robustness and wide adoption by prior works such as TxSpec-
tor [14] and MadMax [15]. To be more specific, we simulate
the EVM stack operations step-by-step, with producing the

global data flow. We generate a new register for every new
operand used by an Opcode, as well as the operation involving
multiple operands (e.g., JUMPI). In this way, every stack-based
operation will be converted into a register-based operation, as
shown in Fig. 3b. For some Opcodes (e.g., JUMPDEST), they
do not generate new values; thus, there is no corresponding
register assigned for such Opcodes (e.g., empty for 0x86). For
Opcodes that generate new values, a register will be given to
represent the value (e.g., v89 for ISZERO).

Step 3: Constructing the global control flow graph
(GCFG). After the IR is generated, Function Identifier will
further construct the GCFG. GCFGs are constructed based on
specific opcodes, implemented based on GIGAHORSE [16].
GIGAHORSE is a decompiler designed for EVM bytecode,
transforming bytecode into a high-level 3-address code repre-
sentation. For example, when the opcode JUMP is encountered,
it indicates a change in code execution from one place to
another. This allows us to split the execution flow into separate
blocks whenever a JUMP is encountered. In the GCFGs, the
nodes are the basic blocks, and the edges are either fall-
through edges or jump-related edges. There are two types of
edges: 1) fall-through edges, and 2) jump-related edges. Fall-
through edges can be easily added by connecting basic blocks
according to the original order. With the IR, we can obtain
the targets of jump-related Opcodes, which are the values of
the JUMPDEST. Function Identifier adds a GCFG edge between
a basic block ending with JUMPI or JUMP and the basic block
address (i.e., a constant value) held by the variable, which
is used to denote the jump target. As shown in Fig. 3c, the
solid lines represent fall-through edges, while the dotted lines
represent the jump-related edges. For example, block 0x86
jumps to 0x92 if the condition v89 is satisfied, which means
the variable v87 is 0; otherwise, block 0x86 will go to the
fall-through edge and go to block 0x8e.

Step 4: Recovering function-based control flow graphs
(FCFGs). The final step is to recover FCFGs from the
GCFG by identifying function bodies and control/data flows.
First, Function Identifier locates function entries by analyzing
the EVM function dispatcher. The dispatcher compares each

3

contract function signature with the input. If a match is
found, control jumps to the function’s entry block; otherwise, it
executes the fallback() function or ends. If Function Identifier
finds a function without a signature at the end, it is the
fallback() function.

2) Proxy Scanner: Proxy Scanner aims to determine
whether a given contract is a proxy contract based on the
identified functions and FCFGs. To identify the proxy from
bytecode, Proxy Scanner leverages the following detection
rules based on our observations (in supplementary material).

Rule 1: Locating the DELEGATECALL in the fallback() func-
tion. Proxy Scanner will iterate all the identified functions, to
find whether there exists a fallback() function; if yes, Proxy
Scanner further checks whether there is a DELEGATECALL in
this specific function.

Rule 2: Ensuring the input for DELEGATECALL is derived
from the parameters of the fallback() function. Before ex-
ecuting DELEGATECALL, it is necessary to execute a specific
CALLDATACOPY operation to fill the memory with the call data,
which represents the user input. Therefore, Proxy Scanner
checks whether CALLDATACOPY is called before DELEGATECALL
to fill the memory used by DELEGATECALL.

Rule 3: Ensuring the returned success status of DELEGATECALL
is checked and the return data is handled case by case (return
when success and revert when fail). After a DELEGATECALL,
the contract either return (status is 1) or revert (status is 0).
Proxy Scanner will fetch the variable of the status returned by
the DELEGATECALL and check whether the variable is used by
a JUMPI. If status is 1, the contract will go to a STOP/RETURN;
otherwise, the contract will go to a REVERT.

3) Logic Contract Extractor: Since the source code is not
available, it is hard to extract the logic contract address directly
from the bytecode. We can try to extract Logic contracts from
the parameters of DELEGATECALL [10], but this method is error-
prone since we are not sure which DELEGATECALL is really the
one that delegates to the Logic contract. To tackle this, we
propose to use transaction information to assist our analysis.
After Proxy Scanner confirms that a smart contract is a proxy,
Logic Contract Extractor will extract all the historical logic
contracts used by this proxy via transaction-level analysis.

Logic Contract Extractor enforces rules to identify transac-
tions where the proxy DELEGATECALLs the Logic contract from
all proxy transactions. We term these transactions as logic-
delegating transactions. Extracting target addresses of such
transactions yields the Logic contracts. We derive the follow-
ing rules from our observations (in supplementary material) to
identify logic-delegating transactions.

Rule 1: Checking whether the fallback() function is called
in a transaction. Logic Contract Extractor first extracts the list
of function signatures (8-byte string, e.g., 0x12345678) from
the bytecode. This function list contains all functions that are
defined in the proxy contract. After that, Logic Contract Extrac-
tor checks whether the function signature of the transaction is
in the signature list (the first 8 bytes of the input); if not, the

transaction will execute the fallback() function, based on the
execution logic of the EVM (§II).
Rule 2: Checking the parameters from transaction traces. Logic
Contract Extractor checks the first two transaction traces to see
whether 1) an EOA CALLs the proxy contract in the 1st trace;
2) the proxy contract DELEGATECALLs another contract in the
2nd trace; 3) the input of 1st and 2nd traces are the same.
If a transaction matches the above rules, it is a logic-delegating
transaction. Note that for the remaining transactions that are
not logic-delegating transactions, their functionalities are hard
to determine. For example, a transaction may be used for
performing an upgrade, or updating the owner of the proxy
contract. In this paper, we do not implement more rules to
distinguish them, since finding logic-delegating transactions
would be sufficient for extracting Logic contracts.
Extracting Logic contract addresses. After identifying all
logic-delegating transactions, Logic Contract Extractor extracts
all target addresses of DELEGATECALLs from every logic-
delegating transaction, and constructs the set of Logic ad-
dresses after deduplication.

B. Correctness of PROXYEX

We developed a prototype of PROXYEX. To evaluate its
effectiveness, we randomly selected 1,000 contracts, split into
548 proxies and 452 non-proxies to ensure an unbiased dataset.
With a 95% confidence level, the error margin is 4.19% for
proxies and 4.61% for non-proxies. Initially, we manually
inspected the source code to evaluate PROXYEX ’s accuracy.
However, 549 contracts lacked source code. In these cases,
we inspected the decompiled code using the Online Solidity
Decompiler [17], also used by other works [14], [18]. We
analyzed PROXYEX ’s detection results for 1,000 contracts
with a 60-second timeout, comparing them with our ground
truth labels. PROXYEX misclassified one proxy as non-proxy
due to a timeout caused by nested loops identifying data
flow dependencies. Overall, with only one false negative,
PROXYEX achieved 100% precision and over 99% recall.

C. Datasets

Data collection involves utilizing Google BigQuery
APIs [19], which facilitate querying Ethereum contracts and
transactions. For instance, to gather transactions associated
with all proxy contracts, we develop SQL code tailored for
querying these specific datasets. In total, we have collected
the following datasets: 1) Proxy contracts. We collect all
the on-chain smart contract bytecode as of September 10,
2023. In total, we have 62,578,635 smart contracts. We apply
PROXYEX on the smart contract bytecode; there are 2,031,422
proxy addresses in total (3.25%). The average detection time
of proxy and non-proxy contracts are 14.85 seconds and 3.88
seconds, respectively. 2) Transactions and traces. We gather
all the transaction traces associated with a DELEGATECALL
sent from the proxy contracts (i.e., logic-delegating trans-
actions) as of September 10, 2023. We collect a 3-tuple
{FromAddr, ToAddr, CallType} for every trace, which we

4

0 5 10 15 20
Count

0

800

1600

2400

3200

4000
Pr

ox
y

Co
un

t

0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 4: Bytecode Duplication

0 20 40 60 80 100
Transaction Count

102

103

104

105

106

Pr
ox

y
Co

un
t

0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 5: Transaction Count

0 400 800 1200 1600 2000
Day

101

103

105

Pr
ox

y
Co

un
t

0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 6: Lifespan

0 10 20 30 40 50 60 70
Upgrade Frequency

101

103

105

Pr
ox

y
Co

un
t

0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 7: Upgrade Frequency

subsequently aggregate into transactions. In total, we collect
172,709,392 transactions for all 2,031,422 proxy contracts.

IV. EVALUATION RESULTS

In this section, we present our evaluation results based
on the datasets to answer three research questions: RQ1:
Statistics, RQ2: Purpose, and RQ3: Bugs and Pitfalls.

A. RQ1: Statistics

1) Bytecode Duplication: Among 2,031,422 proxy con-
tracts, only 6,254 bytecodes are unique, with 4,039 (64.6%)
being exclusive and unduplicated. Thus, just 0.20% of proxy
contracts hold unique bytecode. In total, 1,868 (29.86%)
bytecodes are shared by 20 or fewer contracts. As shown
in Fig. 4, this includes 347 (5.54%) bytecodes shared by
over 20 contracts. The top three bytecodes are used by
1,546,495, 292,285, and 19,069 proxy contracts, respectively,
and they are standard proxy implementations. For example, the
leading contract OwnableDelegateProxy integrates ownerable
and upgradeable features, requiring the owner’s authorization
to upgrade its logic contract.

2) Transaction Count: The 2,031,422 proxy contracts are
related to 172,709,392 logic-delegating transactions. There
are 1,982,378 (97.59%) proxy contracts with less than 100
transactions, and their transaction count is shown in Fig. 5.
1,688,372 (83.11%) of them have less than 10 transactions.
There are only 24 proxy contracts having over a million
transactions. Among the top 10 addresses, five are token
contracts, three are bridge contracts, and two contracts are
Decentralized Finance (DeFi) applications. Specifically, the
top proxy is the token contract USDC [20] and it has the
most transactions (65,497,336), accounting for 37.92% of the
total transactions in our dataset.

3) Lifespan: We define the lifespan (in days) of a
proxy as the duration between its initial DELEGATECALL to a
logic contract and its final DELEGATECALL. If a proxy never
DELEGATECALLs to a logic contract, its lifespan is considered
zero. As shown in Fig. 6, 1,250,750 (61.57%) of the proxies
have a lifespan less than 10 days; 4,733 proxies have a lifespan
of more than 3 years. The proxy with the longest lifespan is the
EventsHistory contract [21] of Ambisafe Operations, which
has been active since July 18, 2016.

Finding 1. The majority of proxies exhibit identical byte-
code (99.80%), involve fewer than 10 associated delegate-
calling transactions (83.11%), and maintain a short lifespan
of less than 10 days (61.57%).

1 contract upgradeableProxy {
2 fallback() external {
3 address(storage[0x0a]).delegatecall(msg.data);
4 }}
5 contract Logic {
6 address _logic;
7 function upgradeTo(address logic) public onlyOwner {
8 storage[0x0a] = logic;
9 }}

Fig. 8: An example of upgradeable proxy.

B. RQ2: Purpose

Given the popularity of proxies, it is vital to understand the
use purpose of proxies on Ethereum. We conduct a manual
inspection on a sample (95% confidence and 5% error margin)
of 385 proxies and categorize the purpose of proxies into four
types, namely upgradeability, extensibility, code-sharing, and
code-hiding. Then, we design automated classifiers to scalably
categorize all proxies in our dataset. We discuss each use
purpose and present the results below.

1) Upgradeability: Smart contracts on Ethereum are im-
mutable and their code cannot be modified once deployed.
This brings many difficulties for developers to maintain a
DApp, e.g., upgrading the contract logic to new versions,
fixing bugs and vulnerabilities found after deployment, etc.
The proxy pattern can be leveraged by developers to alleviate
this issue. In upgradeable proxies, the proxy contract stores the
data of the DApp, while the code in the proxy contract simply
delegates all invocations to a logic contract via DELEGATECALL.
No business logic is implemented in the proxy contract and
the code in the logic contract executes the business logic
on top of the data in the proxy contract. Fig. 8 shows an
example upgradeable proxy. The address of the logic contract
is stored in the storage slot 0x0a, and all invocations to the
proxy are delegated to the logic contract in the fallback
function. A function upgradeTo is available to upgrade the
logic by assigning a new address to the storage slot 0x0a.
Note that both proxy and logic contracts share and operate on
the storage data of the proxy contract.
Classification. The Ethereum community has established sev-
eral standards for implementing upgradeable proxies, includ-
ing Transparent Upgradeable Proxy [22] and Universal Up-
gradeable Proxy Standard (UUPS) [23]. We classify a proxy
into to upgradeable proxy if there exists a function that can
change the address of the logic contract.
Result. We successfully identified 1,634,396 upgradeable
proxies among all proxies in our dataset. Note that not all
proxies are upgradeable [9], e.g, minimal proxies [24] and

5

1 contract TokenProxy {
2 mapping(address=>uint) balances;
3 function balanceOf(address a) public returns(uint) {
4 return balances[a]
5 }
6 function transfer(address to, uint a) public {
7 balances[msg.sender] -= a;
8 balances[to] += a;
9 }

10 fallback() external {
11 address(storage[0x0a]).delegatecall(msg.data);
12 }}
13 contract TokenExtension is TokenProxy {
14 function burn(address a, uint n) public onlyOwner {
15 balance[a] -= n;
16 }}

Fig. 9: An example proxy to achieve extensibility [28].

DELEGATECALL forwarders [25]. We found that a non-negligible
portion (19.54%) of proxies are not upgradeable.

We also measure the upgrade frequency of upgradeable
proxies. The upgrade frequency is the number of times a proxy
upgrades its logic contract. The upgrade frequency for every
proxy is essentially the number of different logic contracts
minus one. Note that here we only count the effective logic
contracts, i.e., the logic contracts that have been used for at
least once. If an upgrade introduces a new Logic contract, but
it is never used (no logic-delegating transaction), it will not be
included in our dataset. Fig. 7 presents the upgrade frequency.
We find that a majority (over 98.24%) of the upgradeable
proxies have never upgraded their logic contracts. 1.75% of
them have upgraded at least once but less than 20 times. The
proxy with the highest upgrade frequency [26] has 67 unique
logic addresses, i.e., has been upgraded 66 times.

Finding 2. Most proxies are upgradeable, while a non-
negligible portion (19.54%) are non-upgradeable. However,
a majority of upgradeable proxies (98.24%) have never
been upgraded after deployment in history.

2) Extensibility: The immutability of smart contracts also
limits the extensibility of DApps. The Ethereum community
has many application standards for DApps to implement,
e.g., ERC-20 (fungible tokens), ERC-721 (NFT), etc. How-
ever, these standards only cover basic functionalities and
DApps usually need to extend the standards with additional
functionalities. We observe that many contract developers
leverage proxy patterns to gradually extend the functionalities
of their DApps. The standard basic functionalities are
implemented in the proxy contract, while all other non-
standard invocations are delegated to the logic contract,
which implements extended functionalities. Fig. 9 shows an
ERC-20 [27] contract with extended functionalities via proxy
pattern. The standard functionalities (e.g., transfer and bal-
anceOf in ERC-20) are implemented in the proxy contract,
while any invocations calling non-ERC-20-standard func-
tions are forwarded to the logic contract TokenExtension
(e.g., burn) in the fallback function of the proxy contract.

Extensibility proxies are designed to balance the trustless-
ness and extensibility of the DApp. Ideally, the smart contract

code should be immutable so that users do not need to trust the
contract owners/developers to be honest (and not maliciously
modify the logic). Otherwise, contract users may be at risk
of rug pull or other centralization risks [29]. By adopt-
ing an extensibility proxy pattern, contract developers can
keep a balance between trustlessness and extensibility, where
the core functionalities implemented in the proxy contracts
(e.g., TokenProxy in Fig. 9) are immutable while the extended
functionalities in logic contracts (e.g., TokenExtension) are
flexible to update as needed.

Classification. Extensibility proxies may also update the
address of the logic contract, which contains the extended
functionalities. The key difference is that extensibility proxies
implement part of the functionalities in the proxy contract.
Therefore, we classify a proxy to be an extensibility proxy if
not all business logic invocations are forwarded to the logic
contract, i.e., some invocations to the contract are handled
by the proxy contract, while some are forwarded to the logic
contract. To detect extensibility proxies, our heuristic is that
in extensibility proxies, the code in the proxy contract and
logic contract must share the data in the proxy. We replay all
historical transactions of each proxy and collect extensibility
proxies whose proxy and logic contracts have ever accessed
the same storage slot in history.

Results. We successfully identified 32 proxies satisfying the
aforementioned criteria. We manually investigated each of
them and found that 31 of them are true extensibility proxies.
The other proxy is not an extensibility proxy but satisfies
our classification criteria in that it is an implementation bug.
Two different state variables in proxy and logic contracts
accidentally use the same storage slot (which they should not)
due to an implementation bug. We will further discuss this
kind of bug in §IV-C1.

Finding 3. The proxy pattern can be leveraged to achieve
the extensibility of functionalities of smart contracts. How-
ever, implementing business logic in both proxy and logic
contracts is error-prone and requires careful design and
correctness audit.

3) Code-sharing: In DApps, it is often the case that mul-
tiple smart contracts are deployed with the same code to
operate on different data. For example, for decentralized token
exchange DApps (e.g., Uniswap), developers need to deploy
exchange contracts for each pair of exchangeable tokens.
Deploying smart contracts induces non-negligible costs for
developers, proportional to the size of the smart contract code
with exactly the same logic. Proxy patterns can be leveraged to
share code between smart contracts and save deployment costs
for developers. In code-sharing proxies, multiple proxy
contracts may delegate their logic execution to the same
logic contract. The code is shared in the logic contract
while the data that the shared logic operates are stored in
individual proxy contracts. Users can continue to interact with
the proxy contracts as if there is no code sharing. Fig. 10

6

1 contract Proxy1 {
2 fallback() external {
3 address(storage[0x0a]).delegatecall(msg.data);
4 }}
5 contract Proxy2 {
6 fallback() external {
7 address(storage[0x0a]).delegatecall(msg.data);
8 }}
9 contract SharedLogic {

10 ERC20 token0, token1;
11 function swap(amount x) public {
12 // swap x amount of token0 to token1
13 ...
14 }}

Fig. 10: An example of code-sharing using the proxy pattern.

shows an example of code-sharing proxy. Both Proxy1 and
Proxy2 delegate their logic to the SharedLogic contract,
which provides token exchange functionality. The data of the
two proxies are separate, i.e., Proxy1 and Proxy2 may have
different values for variable token0 and token1 to swap
different pairs of tokens.
Classification. The major characteristic of code-sharing prox-
ies is that multiple proxies share the same logic contract. To
identify code-sharing proxies, we enumerate all proxies in our
dataset and check the addresses of their logic contracts. If
a logic contract is used by more than one proxy, then those
proxies are code-sharing proxies.
Results. We have identified 1,137,317 code-sharing proxies in
our dataset. Based on the logic contract they share, the proxies
can be separated into different clusters. The size of each cluster
is the number of proxies in the cluster; each cluster has a size
larger than or equal to 2. There are in total 3,309 code-sharing
proxy clusters. 45 (1.35%) clusters have a size larger than 500.
There are 705 (21.31%) clusters whose size is larger than 10,
and 151 (4.56%) clusters whose size is larger than 100. The
most shared logic contract named AuthenticatedProxy [30]
is shared by 943,601 proxies.

Finding 4. Proxies often share the logic contracts. We
identified 1,137,317 code-sharing proxies in our dataset.
The top shared logic contract is shared by 943,601 proxies.

4) Code-hiding: Many blockchain explorers, like Ether-
scan, utilize the EIP standard to implement slots to identify and
display the logic contracts. Users and security researchers rely
on such explorers, especially Etherscan, to check the source
code and labels of on-chain contracts [31]–[33]. To escape
from scrutiny by users or other third parties, malicious actors
may hide their malicious logic behind a proxy and deceive
blockchain explorers or monitoring tools so that it appears
to be a legitimate logic contract [34]. Such deception is
possible in that auditors usually rely on EIP-1967 [11], which
defines the specific storage slot where the address of the
logic contract is stored, to identify the logic contract of a
proxy. Malicious proxies may store an address of a legitimate
logic contract in the specific slot defined in EIP-1967, but the
actual execution is delegated to another logic contract, which
contains malicious logic, at runtime.

1 contract CodeHidingProxy {
2 bytes32 eip1967slot = keccak256(’eip1967.proxy.

implementation’) - 1;
3 fallback() external {
4 storage[eip1967slot] = address(Legitimate);
5 address(Malicious).delegatecall(msg.data);
6 }}
7 contract Legitimate {...}
8 contract Malicious {...}

Fig. 11: An example of using the proxy pattern to hide logic.

Note that the developers of code-hiding proxy contracts
can be either malicious or benign; it is hard to distinguish in
reality due to the anonymity of contract developers. However,
regardless of their intentions, their misuse of certain EIP
standard implementation slots misleads users. This would
cause mis-identification of logic in blockchain explorers and
induce security risks such as honeypot attacks [35], as the
actual contract owner may deliberately hide malicious logic.
Fig. 11 shows an example contract that hides its logic behind
a proxy, deceiving blockchain explorers with a fake logic
contract address.
Classification. Following the existing practice by Forta Net-
work [36], we identify malicious proxies by checking whether
a proxy is delegating its execution to the logic contract, whose
address is different from what it claims in the storage slot
defined by EIP-1967. We replay all historical transactions of
the proxy and compare the address of the actual logic contract
being executed to the address stored in that specific storage
slot. If they are different, we consider that the proxy is dishon-
estly hiding its implementation and may be a malicious proxy.
Results. We successfully identified 1,213 proxies that
delegate their execution to a logic contract other than
the one claimed in the standard storage slot defined by
EIP-1967 [11]. Since smart contracts deployed on the
blockchain are anonymous, we are not able to confirm
the underlying purpose of these proxies hiding logic
contracts. Nevertheless, we do find that popular blockchain
explorers like Etherscan [12] indicate false logic contracts
for these proxies. For instance, for the proxy contract at
address 0x9276635ec39c72866f3cf70298efe501eb5dcdf1,
Etherscan indicates its logic contract as
0xbcb7549e7af77bce0d1bca1a5ef679594e9f2a87,
while the actual executed logic contract is
0x29e45aabc905056162f7521005c6a1919ae6a32c.

Finding 5. 1,213 contracts hide their logic behind a proxy
and deceive blockchain explorers with a fake logic address.
Implication. Users are advised to carefully identify the
actual logic contract by simulating the execution before
sending transactions to proxy contracts.

C. RQ3: Bugs and Pitfalls

For RQ3, we aim to investigate the common bugs in
proxies. We first summarize three kinds of common pitfalls
in implementing proxies and then identify such bugs in
proxies with semi-automated processes. Our goal is to

7

1 contract AudiusAdminUpgradeabilityProxy {
2 address private proxyAdmin;
3 function upgradeTo(address logic) external {
4 require(msg.sender == proxyAdmin ,

ERROR_ONLY_ADMIN);
5 _upgradeTo(logic);
6 }}
7 contract Governance {
8 bool private initialized;
9 bool private initializing;

10 modifier initializer() {
11 require(initializing || !initialized);
12 _;
13 }
14 function initialize(address registry , address

guardian) initializer public {
15 ...
16 }}

Fig. 12: A simplified version of the vulnerable proxy in Audius [37].

reveal the prevalence of such bugs on Ethereum and offer a
comprehensive understanding of them in real-world proxies.

1) Proxy-logic Collision: Many proxies implement their
business logic in both proxy contracts and logic contracts
(e.g., extensibility proxies in §IV-B2). If the logic contract
uses the same storage slot as the code in the proxy
contract but with different semantic interpretations,
bugs occur. The hack of Audius [37] on July 2022
was caused by such storage collision between proxy and
logic contracts, inducing over $1.1M of loss. Fig. 12
shows a simplified version of the vulnerable proxy in
Audius. The contract AudiusAdminUpgradeabilityProxy

is the proxy contract, which delegates its business logic
to contract Govercance (logic contract). The contracts
have proxy-logic storage collision between the variable
proxyAdmin in AudiusAdminUpgradeabilityProxy and
variables initialized/initializing in Governance. Note
that the values of initialized and initializing are packed
together in one storage slot, each occupying one byte. At
runtime, both proxyAdmin and initialized/initializing
point to the storage slot 0x0 of the proxy contract. However,
the storage value is interpreted as different types and meanings
in the proxy and logic contracts. In the Audius attack, the
Governance contract has already been initialized by the
developers and should not be initialized again. However,
the variable initializing loads the second byte of storage
slot 0x0 as a boolean value, which is 0xab, the second byte
of the proxyAdmin address on the blockchain. As a result,
the Governance contract can always be initialized again and
malicious users can exploit this to make profits.

Detection. Similar to the classification of extensibility proxies,
we detect proxy-logic collision by replaying all historical
transactions of each proxy and checking whether the code in
the proxy contract and the code in the logic contract may
access the same storage slots in transaction execution. Note
that if proxy and logic contracts do not have overlaps in storage
slots accessed, they will never collide. We only consider the
write access to the storage slots, i.e., write-write conflict, since
the read access in either the proxy or logic contract does not
influence the execution of other contracts. After the automated

detection of write-write conflicts, we manually inspect the
filtered proxies to check whether they are vulnerable, i.e.,
having proxy-logic collisions.

Evaluation. To ensure the correctness of the detection of
write-write conflicts, we manually evaluate the correctness
of our detector by sampling 100 transactions of proxies
and manually check if the write access to storage slots in
transactions is correctly captured by our detector or not. We
use Phalcon [38], a popular transaction trace explorer, as the
ground truth of storage access. The manual check shows 100%
accuracy in storage access detection. Note that the write-write
conflict detector is only meant to automatically filter proxies
that potentially have proxy-logic collisions before we manually
inspect the contract and identify bugs.

Results. We identified 32 proxies that contain write-write
conflicts on storage between the proxy and logic contract.
After the manual check, it turns out that only one proxy is
truly vulnerable, while all other 31 proxies are benign ones.
Those benign ones are extensibility proxies as we discussed
in §IV-B2. The reason behind a high false positive rate is
that our detection does not check whether the proxy and logic
contracts interpret the shared storage slot in the same way.
The write-write conflict is only buggy if the interpretation of
storage values is different, like the Audius contract; otherwise,
it is benign. We leave the more precise detection of storage
collision problems for future work.

Finding 6. The proxy is buggy if the proxy and logic
contracts use the same storage slots and the semantics of
the usage are different.
Implication. Proxy contract developers should avoid
declaring state variables in proxies and only store data in
special storage slots as suggested by EIP-1967 [11], which
are collision-free, in proxy contract code. For extensibility
proxies, the logic contract should always inherit the proxy
contract so that the logic contract always uses values in
storage slots in the same way as the proxy contract.

2) Logic-logic Collision: When proxies update the
address of their logic contract, the new logic contract may
be incompatible with the old version. In other words, the
new logic contract may interpret the storage data in a different
way than the previous logic contract, causing unexpected
behaviors. The attack on Shata Capital [39] on February
2023 exploited the logic-logic storage collision. Fig. 13
shows the code snippets that have storage collisions between
the new and old versions of logic contracts. Shata Capital
upgraded the logic contract from OldEFVault to NewEFVault.
The new logic contract NewEFVault changes the declaration
of state variables. In smart contracts, state variables are
assigned storage slots according to their declaration order. As
a result, the variable assetDecimal in the new logic contract
NewEFVault reads the storage slot that previously stored the
value for the variable maxDeposit in the OldEFVault contract.
After the logic upgrade, the variable assetDecimal contains

8

1 contract OldEFVault {
2 ...
3 string public constant version = "3.0";
4 uint256 public maxDeposit;
5 uint256 public maxWithdraw;
6 bool public paused;
7 ...
8 }
9 contract NewEFVault {

10 ...
11 string public constant version = "4.0";
12 uint256 private assetDecimal;
13 uint256 public maxWithdraw;
14 uint256 public maxDeposit;
15 bool public paused;
16 ...
17 }

Fig. 13: A simplified version of the old and new logic contracts that
have storage collision in Shata Capital [39].

an unexpected large value (which is maxDeposit in the old
logic), causing a severe loss of $5.1M.

Detection. The key to detecting logic-logic collision is to
determine whether the new logic contracts are compatible with
the previous version’s logic in terms of storage access. One
straightforward approach to check the storage compatibility
of two logic contracts is to compare the storage layout of two
logics. However, many of the proxies in our dataset do not
have source code available thus we cannot obtain their storage
layouts. Therefore, we propose to simulate historical transac-
tions on newer logics and check if the storage access patterns
of historical transactions remain the same. If a transaction
simulated on a newer logic no longer accesses the storage slots
that were accessed on the original logic contract on which
this transaction was executed in history, it is highly likely
that the new logic contract has incompatible storage layouts
than the previous logic. To further increase the precision of
our detection, we also infer the type of storage data in logic
contracts by inspecting the values being written to the storage.
If one storage slot is inferred to be different types in two
logic contracts, there is highly likely to be a storage collision.

Specifically, given a transaction T originally executed on
the logic contract Ln of proxy P in history, we simulate T
on proxy P with a newer logic contract Lm, where m,n are
version numbers and m > n. We record the storage access
of T on logic Ln (in blockchain history) and Lm (in our
simulation), separately. Then, we check if there exist a storage
access that were performed on Ln (original logic) but not
on Lm (newer logic). If so, the newer logic is likely to be
incompatible with the original logic.

To infer the type of each storage slot in logic contracts, we
by default consider each shared storage slot with a union type
bool|int|address|bytes32, and then gradually narrow down
its type by inspecting the values written to this storage slot dur-
ing transaction execution. Specifically, we assume a common
value range of different types as shown in Table I, and discard
a type if a value out of the range is written to the storage slot.
For instance, if we find that there exists a transaction writting
value 100 to storage slot 0x0, we will infer that this storage
slot is not of type bool. Note that our assumed value range of

bool int address bytes32

[0, 1] [0, 232) [232, 2160] (2160, 2256)

TABLE I: Assumed value range of inferred types for storage slots.

types are not the theoretical value range of the corresponding
Solidity type. Our assumed value range is aimed to capture
the range of common value at runtime and approximate the
high-level types in smart contracts. We infer types of each
storage slot for different logic contracts separately. If two logic
contracts of the same proxy differs in some types of storage
slots, there is likely to be a storage collision.

Evaluation. Note that the aforementioned transaction replay
and type inference are meant to automatically filter out most
logic contracts that are not vulnerable before we manually
check the logic contracts to identify collision bugs. We eventu-
ally use manual analysis to inspect the implementation details
of two logic contracts of the same proxy and determine
whether they interpret the same storage slot in different
semantics, i.e., there are logic-logic collision bugs. As such,
it is necessary to evaluate and ensure that the filtering process
does not exclude many truly problematic proxies.

We sample 100 pairs of old and new logic contracts
excluded by transaction replay and type inference, and check
for storage collisions using evm.storage [40]. We find only
two pairs with conflicting storage layouts, indicating 98%
precision in our automated filtering and a low probability of
missing collisions.

Results. We first simulated all transactions proxies on new ver-
sions of logic contracts and found that there are 15,176 proxies
whose newer logic has different storage access pattern than
then old logic. We then infer storage slot types for each logic
contract of these 15,176 proxies and identified 588 proxies
whose old and new logic have different storage slot types. We
further manually checked each of these 588 proxies and con-
firmed that 15 of them contain true logic-logic collision bugs.

Finding 7. Proxies may suffer from logic-logic storage
collision if the newly upgraded logic contract is incompati-
ble with the old version. We identified 15 proxies that have
logic-logic collision bugs in their upgrades.
Implication. Developers should keep the storage layout
unchanged when upgrading logic contracts. Developers
may consider to always inherit the old version of logic
contract when developing a new version to ensure the
storage compatibility.

3) Uninitialized Proxy: Smart contracts usually initialize
their state in the contract constructor (e.g., set the owner
of the contract), which is executed when the contract is
deployed. However, proxies cannot initialize their state using
the constructor since the data and code are separated into
two contracts (proxy contract and logic contract), i.e., the
constructor of the logic contract cannot initialize the data
in the proxy contract. To mitigate this issue, proxies usually
implement an initialize function instead, which needs to

9

1 contract Proxy {
2 function fallback() external {
3 address(Logic).delegatecall(msg.data);
4 }}
5 contract Logic {
6 address owner;
7 bool private initialized;
8 function initialize(address _owner) public {
9 require(!initialized);

10 initialized = true;
11 owner = _owner;
12 }}

Fig. 14: An example proxy with initialize function.

be called explicitly after deployment. Fig. 14 shows an ex-
ample proxy with the initialize function. The initialize
function brings a new attack surface of front-running. If the
initialize function is not called within the same trans-
action as the contract deployment, attackers may front-
run the invocation of initialize function and initialize
the contract for their own use , e.g., claim the ownership
as in Fig. 14. Uninitialized proxies have been exploited many
times in history, including the hacks on Parity [41], Aave [42],
Teller [43], KeeperDAO [44], Rivermen NFT [44], Harvest
Finance [45], and Wormhole [46].
Detection. We detect the uninitialized proxies by trying to
invoke initialize function right after the deployment trans-
action of the proxy in the history. The function initialize
can only be executed once, so if the developer had already
initialized the proxy in the deployment transaction, our invo-
cation would fail; otherwise, it indicates that this is an unini-
tialized proxy subject to front-running attacks. One challenge
is that there is no fixed function signature for initialize
function. The initialize functions in different proxies may
have different names and parameters. Without knowing the
function signature, we cannot craft valid call data to initialize
the proxy. To tackle this challenge, we mine all possible
initialize function signatures on all proxies in our dataset.
We assume that for most proxies, the first invocation after the
deployment should be calling the initialize function. We
inspect the transaction history of each proxy and collect a set
of 255 distinct invocations of initialize functions. In the
end, we replay each initializing invocation on each proxy at
the moment right after their deployment transaction and check
if it is possible to initialize the proxy with an arbitrary user.
Evaluation. We conduct a manual evaluation of the
initialize functions we inferred automatically to ensure that
we do not miss many uninitialized proxies. Specifically, we
sample 100 source-available logic contracts from our proxy
dataset, manually identify the initialize function used by
these proxies, and check if they are included in our automati-
cally extracted set of initialize functions. Results show that
our automated technique identifies 62% of the initialize
functions. Note that many missed initialize functions are
specific only in one logic contract and that contract is often
never used after deployment. Nevertheless, by replaying each
possible initializing invocation, we faithfully identify majority
of different forms of initialize functions.

Results. We successfully identified 183 proxies that were not
initialized in the same transaction as the deployment. Note that
although these proxies were subject to front-running attacks
by the time of their deployment, they are not necessarily
exploitable on the latest state of Ethereum since the proxy
may have already been initialized by the developer at present.
Hence, we further investigate each of these proxies manually
to check whether they are still exploitable at the latest state
of Ethereum (January 2024). We found that 103 out of 183
proxies (56.28%) are still exploitable, meaning that anyone can
re-initialize these proxies at present. Among 103 exploitable
proxies, 81 proxies have never been initialized in history. The
rest 22 proxies, although they have already been initialized
by their developers, can still be re-initialized due to improper
access control to the initialize function. Noteworthy, we
were able to identify a zero-day vulnerability that is still
exploitable and can induce severe consequences. The affected
Total Value Locked (TVL) is over $2M. We have reported
to the developers who have started working on rescuing the
affected assets at the time of writing.

Finding 8. A proxy may be subject to front-running
attacks if it is not initialized within the same transaction
as its deployment. We identified a zero-day vulnerability
confirmed by the developer, which can cause over $2M loss.
Implication. Developers should be aware of the front-
running attack risk and initialize their proxies atomically in
the deployment transaction, and should not allow afterward
re-initialization under any circumstances.

V. DISCUSSION

A. Threats to Validity

We acknowledge several threats to the validity of the results
and findings in our study. First, quality of the proxy dataset.
We collect a large-scale dataset of proxies using PROXYEX.
Contracts that are not proxies may be included and some
true proxies may be missed by PROXYEX. To mitigate this
threat, we conducted an evaluation in §III-A2 to show that
PROXYEX achieve a high precision (100%) and recall (99%).
Second, manual inspection. We categorized the use purposes
of proxies (§IV-B) manually, which may induce incomplete-
ness and bias. To mitigate this threat, two of the authors
first individually inspected the sampled proxies and proposed
their categories independently. Then, the two authors, together
with an additional author, discussed and merged their proxy
categories and finalize the taxonomy of use purposes with
a consensus. Third, validity of detected bugs. We designed
three detectors in §IV-C and identified several bugs from our
dataset. The detected bugs may be false positives. To mitigate
this threat, we invite an experienced Solidity programmer with
over 4 years of experience to confirm our findings.

B. Usefulness

This study aims to provide valuable insights for researchers,
developers and users. For researchers, our study guides future

10

research by highlighting the need to focus on various types
of proxies, not just upgradeable ones (§IV-B). Different uses
of proxies present new challenges in contract design, bug
detection, and on-chain security. Our findings can inspire
research on design trade-offs of trustlessness and flexibility
features in DApps (upgradeability and extensibility proxies,
§IV-B1 and §IV-B2) and serve as heuristics for contract testing
and bug detection (§IV-C). For blockchain users, we offer a
comprehensive study to understand the usage and security risks
in contract proxies (§IV-B and §IV-C), such as malicious code-
hiding proxies (§IV-B4). For developers, our study offers
practical guidance by summarizing proxy use purposes and
helping developers choose the right design patterns (§IV-B).
It alerts developers to potential security issues (§IV-C). De-
velopers are advised to properly initialize contract state at
deployment (§IV-C3) and carefully avoid storage collisions
between both proxy-logic and logic-logic contracts (§IV-C1
and §IV-C2) to improve DApp quality.

VI. RELATED WORK

Prior Works on Proxy Contracts. To the best of our
knowledge, prior papers related to proxy contracts mainly
focus on upgradeable proxies [8], [9]. Bodell et al. proposes
USCHUNT [8], which is a static analysis framework for
detecting upgradeable smart contracts based on smart contract
source code. USCHUNT performs upgradeable proxy detection
on 8 Ethereum-based blockchains; For Ethereum, it detects
5,384 upgradeable proxies from about 500k smart contract
source code. Salehi et al. [9] defined six smart contract
upgrade patterns, and built a measurement framework to
study smart contracts in those categories within a one-year
transaction dataset. They replayed every transaction and uti-
lized EVM transaction traces for detecting transactions using
DELEGATECALL, and extracted the bytecode of the to address
of such transactions as proxy contracts. Recently, Ruaro et
al. proposed Crush [10], a tool focusing on detecting storage
collisions in proxy smart contracts. Similar to [9], Crush solely
detects DELEGATECALL inside transactions to identify proxy
and logic contracts, which is overly general according to the
definition of proxy from OpenZeppelin [47].

We compare our work with existing works in Table II.
In summary, our work has a broader scope, with three key
differences. 1) Comprehensive Coverage. We cover all proxy
contracts (upgradeable and non-upgradeable) following Open-
Zeppelin’s official proxy definition [47]; existing works [8],
[9] only cover upgradeable ones. As shown in §IV-B, around
19.54% of proxies are non-upgradeable. 2) Large-Scale Study.
We conduct the first large-scale and systematic study on all
proxy contracts, extracting insights from three aspects: Statis-
tics, Purpose, and Bugs and Pitfalls. This provides a complete
view of the proxy landscape, unlike existing works that
focus on a single security issue (storage collision in [10]). 3)
Methodology. Our proxy detection methodology significantly
differs from existing works. USCHUNT [8] detects proxies
from source code, but their method is limited since about two-
thirds of Ethereum contracts lack source code [48]. Salehi et

Require
Source?

Matching OZ’s
Proxy Def?

Support
Non-USCs? Dataset Duration

USCHUNT [8] Yes No No Mar. 2016 - Jan. 2022
Salehi et al. [9] No No No Sep. 2020 - Jul. 2021

Crush [10] No No Yes Jul. 2015 - Apr. 2023
This Paper No Yes Yes Jul. 2015 - Sep. 2023

TABLE II: Comparison of our paper and related works; OZ’s Proxy
Def: the official proxy definition by OpenZeppelin [47]; Non-USC:
non-upgradable smart contracts.

al. [9] and Crush [10] detect proxies based solely on the
DELEGATECALL action, which is error-prone and leads to many
false positives. For instance, the ERC-6357 contract [49]
is incorrectly classified as a proxy. We introduce the first
approach to precisely identify proxies from contract bytecode.
Empirical Analysis on Ethereum. Many researches perform
empirical analysis on different aspects of Ethereum, such as
the transactions and interactions among different entities [50]–
[57]. Miner Extractable Value (MEV) or Block Extractable
Value (BEV) have also attracted much interest [33], [58]–[66].
However, none of these works focuses on proxy contracts.
Bug Detection on Smart Contracts. To secure smart con-
tracts before they are deployed, many works study the vul-
nerabilities of smart contracts and attacks transactions on
Ethereum. Various works use static analysis approaches [13],
[14], [67]–[80], such as symbolic execution, to uncover vulner-
abilities and bugs in smart contracts. Some other works [81]–
[91] make use of fuzzing techniques to discover bugs in smart
contracts. Due to the severity of smart contract vulnerabilities
and DeFi attacks, many researchers tried to present systemati-
zation of knowledge papers (SoKs) [33], [92]–[99]. Compared
to these works, our work focuses on proxy contracts.

VII. CONCLUSION

The proxy pattern is an important design pattern in
Ethereum smart contracts. In this paper, we present the first
systematic empirical study on proxy contracts at the Ethereum
ecosystem scale. We build the first framework for detect-
ing proxy contracts from bytecode, and collect a dataset of
2,031,422 proxies as well as their transactions to perform
empirical analysis. We first study the basic statistics, and find
that code duplication is prevalent in proxies. To study the
purpose of proxies, we propose a taxonomy to categorize
proxies into four categories – upgradeability, extensibility,
code-sharing, and code-hiding, and perform analysis on each
type. We further summarize three types of common bugs in
proxies and design checkers to detect them in our dataset. This
paper provides valuable insights into the current landscape
of proxies, which can facilitate future research on different
aspects of proxies.

ACKNOWLEDGEMENT

This work was supported in part by an Ethereum Foun-
dation Academic Grant, and a generous gift from the Forta
Foundation. The Purdue authors were partially supported by
an Ethereum Foundation small grant (FY24-1601).

11

REFERENCES

[1] V. Buterin, “Ethereum white paper: A next generation smart contract &
decentralized application platform,” 2013.

[2] Ethereum, “Ethereum.org.” https://ethereum.org/en/, 2024.
[3] DappRadar, “Dappradar - ethereum.” https://dappradar.com/chain/

ethereum?range-cs=all, 2024.
[4] V. Buterin, “Eip-170: Contract code size limit,” Ethereum Improvement

Proposals, no. 170, 2016. https://eips.ethereum.org/EIPS/eip-170.
[5] N. Mudge, “Eip-2535: Diamonds, multi-facet proxy,” Ethereum Improve-

ment Proposals, no. 2535, 2020. https://eips.ethereum.org/EIPS/eip-
2535.

[6] Y. Kambayashi and H. Ledgard, “The separation principle: A program-
ming paradigm,” IEEE Software, vol. 21, no. 2, pp. 78–87, 2004.

[7] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

[8] W. E. Bodell III, S. Meisami, and Y. Duan, “Proxy hunting: Under-
standing and characterizing proxy-based upgradeable smart contracts in
blockchains,” in 32nd USENIX Security Symposium, 2023.

[9] M. Salehi, J. Clark, and M. Mannan, “Not so immutable: Upgradeability
of smart contracts on ethereum,” arXiv preprint arXiv:2206.00716, 2022.

[10] N. Ruaro, F. Gritti, R. McLaughlin, I. Grishchenko, C. Kruegel, and
G. Vigna, “Not your type! detecting storage collision vulnerabilities in
ethereum smart contracts,”

[11] E. I. Proposals, “Erc-1967: Proxy storage slots.” https:
//eips.ethereum.org/EIPS/eip-1967, 2019.

[12] Etherscan, “Etherscan.” https://etherscan.io/, 2024.
[13] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,

and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv preprint arXiv:1809.03981, 2018.

[14] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “TXSPECTOR: Uncov-
ering attacks in ethereum from transactions,” in 29th USENIX Security
Symposium, 2020.

[15] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, pp. 1–27, 2018.

[16] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-
ough, declarative decompilation of smart contracts,” in International
Conference on Software Engineering (ICSE), 2019.

[17] EtherVM, “Online solidity decompiler.” https://ethervm.io/decompile/,
2024.

[18] N. Grech, S. Lagouvardos, I. Tsatiris, and Y. Smaragdakis, “Elipmoc:
Advanced decompilation of ethereum smart contracts,” Proceedings of
the ACM on Programming Languages, vol. 6, no. OOPSLA1, pp. 1–27,
2022.

[19] G. Bigquery, “Ethereum in bigquery: a public dataset for smart con-
tract analytics.” https://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-public-dataset-smart-contract-analytics, 2018.

[20] Etherscan, “Address.” https://etherscan.io/address/
0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 2023.

[21] Etherscan, “Eventshistory contract address.” https://etherscan.io/address/
0x60bf91ac87fee5a78c28f7b67701fbcfa79c18ec, 2024.

[22] OpenZeppelin, “The transparent proxy pattern.” https:
//blog.openzeppelin.com/the-transparent-proxy-pattern/, 2018.

[23] G. Barros and P. Gallagher, “Eip-1822: Universal upgradeable proxy
standard (uups),” Ethereum Improvement Proposals, no. 1822, 2019.
https://eips.ethereum.org/EIPS/eip-1822.

[24] P. Murray, N. Welch, and J. Messerman, “Erc-1167: Minimal proxy
contract.” https://eips.ethereum.org/EIPS/eip-1167, 2018.

[25] V. Buterin, “Delegatecall forwarders: how to save 50-98 contracts with
the same code.” https://www.reddit.com/r/ethereum/comments/6c1jui/
delegatecall_forwarders_how_to_save_5098_on/, 2017.

[26] Etherscan, “Proxy contract address with the high-
est upgreade frequency.” https://etherscan.io/address/
0x3d71d79c224998e608d03c5ec9b405e7a38505f0, 2024.

[27] Ethereum, “Erc20 token.” https://ethereum.org/en/developers/docs/
standards/tokens/erc-20/, 2024.

[28] Etherscan, “Address.” https://etherscan.io/address/
0x630d98424efe0ea27fb1b3ab7741907dffeaad78, 2024.

[29] F. Cernera, M. L. Morgia, A. Mei, and F. Sassi, “Token spammers,
rug pulls, and sniper bots: An analysis of the ecosystem of tokens in
ethereum and in the binance smart chain (BNB),” in 32nd USENIX

Security Symposium (USENIX Security 23), (Anaheim, CA), pp. 3349–
3366, USENIX Association, Aug. 2023.

[30] Etherscan, “Authenticatedproxy contract address.” https://etherscan.io/
address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2, 2018.

[31] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, and Z. Zheng, “Phishing
scams detection in ethereum transaction network,” ACM Transactions
on Internet Technology (TOIT), vol. 21, no. 1, pp. 1–16, 2020.

[32] S. Li, G. Gou, C. Liu, C. Hou, Z. Li, and G. Xiong, “Ttagn: Temporal
transaction aggregation graph network for ethereum phishing scams
detection,” in Proceedings of the ACM Web Conference 2022, pp. 661–
669, 2022.

[33] S. Yang, F. Zhang, K. Huang, X. Chen, Y. Yang, and F. Zhu,
“Sok: Mev countermeasures: Theory and practice,” arXiv preprint
arXiv:2212.05111, 2022.

[34] F. Community, “Evasion techniques: Report on the continuous mon-
itoring.” https://github.com/apehex/web3-evasion-techniques/blob/main/
report/forta.pdf, 2023.

[35] L. Academy, “Honeypot crypto scam meaning..” https:
//www.ledger.com/academy/glossary/honeypot-crypto-scam, 2024.

[36] F. Network, “Evasion bounty: Fake standards.”
https://forta.notion.site/Evasion-Bounty-Fake-Standards-
673a496a7684498a80ca4d07060fb160, 2023.

[37] Audius, “Audius governance takeover post-mortem 7/23/22.”
https://blog.audius.co/article/audius-governance-takeover-post-mortem-
7-23-22.

[38] BlockSec, “Phalcon explorer.” https://blocksec.com/explorer, 2024.
[39] Peckshield, “It seemed shata capital’s efvault suffered from an upgrade

glitch.” https://twitter.com/peckshield/status/1630490333716029440.
[40] EVM.storage, “Blockchain search + exploration..” https:

//explorer.sim.io, 2024.
[41] OpenZeppelin, “The parity wallet hack explained.” https:

//blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-
405a8c12e8f7/.

[42] TrailofBits, “Breaking aave upgradeability.” https://blog.trailofbits.com/
2020/12/16/breaking-aave-upgradeability/.

[43] Immunefi, “Teller bugfix review and bug bounty launch.”
https://medium.com/immunefi/teller-bug-fix-postmorten-and-bug-
bounty-launch-b3f67a65c5ac.

[44] Iosiro, “Perma-brick uups proxies with this one trick (devs hate
this!).” https://iosiro.com/blog/openzeppelin-uups-proxy-vulnerability-
disclosure.

[45] Immunefi, “Harvest finance uninitialized proxies bugfix review— $200k
bounty.” https://medium.com/immunefi/harvest-finance-uninitialized-
proxies-bug-fix-postmortem-ea5c0f7af96b.

[46] Immunefi, “Wormhole uninitialized proxy bugfix review.”
https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-
review-90250c41a43a.

[47] OpenZeppelin, “Openzeppelin docs - proxies.” https:
//docs.openzeppelin.com/contracts/3.x/api/proxy, 2024.

[48] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts,”
in 32nd USENIX Security Symposium (USENIX Security 23), pp. 1775–
1792, 2023.

[49] E. I. Proposals, “Erc-6357: Single-contract multi-delegatecall..” https:
//eips.ethereum.org/EIPS/eip-6357, 2023.

[50] X. T. Lee, A. Khan, S. Sen Gupta, Y. H. Ong, and X. Liu, “Mea-
surements, analyses, and insights on the entire ethereum blockchain
network,” in Proceedings of The Web Conference 2020, 2020.

[51] T. Chen, Z. Li, Y. Zhu, J. Chen, X. Luo, J. C.-S. Lui, X. Lin,
and X. Zhang, “Understanding ethereum via graph analysis,” ACM
Transactions on Internet Technology (TOIT), 2020.

[52] L. Zhao, S. Sengupta, A. Khan, and R. Luo, “Temporal analysis
of the entire ethereum blockchain network,” Proceedings of the Web
Conference 2021, 2021.

[53] Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, “Evolution of ethereum:
A temporal graph perspective,” 2020.

[54] A. Said, M. U. Janjua, S.-U. Hassan, Z. Muzammal, T. Saleem,
T. Thaipisutikul, S. Tuarob, and R. Nawaz, “Detailed analysis of
ethereum network on transaction behavior, community structure and link
prediction,” PeerJ Computer Science, 2021.

[55] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and understanding
ethereum transaction records via a complex network approach,” IEEE
Transactions on Circuits and Systems II: Express Briefs, 2020.

12

https://ethereum.org/en/
https://dappradar.com/chain/ethereum?range-cs=all
https://dappradar.com/chain/ethereum?range-cs=all
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-1967
https://eips.ethereum.org/EIPS/eip-1967
https://etherscan.io/
https://ethervm.io/decompile/
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
 https://etherscan.io/address/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
 https://etherscan.io/address/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
https://etherscan.io/address/0x60bf91ac87fee5a78c28f7b67701fbcfa79c18ec
https://etherscan.io/address/0x60bf91ac87fee5a78c28f7b67701fbcfa79c18ec
https://blog.openzeppelin.com/the-transparent-proxy-pattern/
https://blog.openzeppelin.com/the-transparent-proxy-pattern/
https://eips.ethereum.org/EIPS/eip-1822
https://eips.ethereum.org/EIPS/eip-1167
https://www.reddit.com/r/ethereum/comments/6c1jui/delegatecall_forwarders_how_to_save_5098_on/
https://www.reddit.com/r/ethereum/comments/6c1jui/delegatecall_forwarders_how_to_save_5098_on/
https://etherscan.io/address/0x3d71d79c224998e608d03c5ec9b405e7a38505f0
https://etherscan.io/address/0x3d71d79c224998e608d03c5ec9b405e7a38505f0
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://etherscan.io/address/0x630d98424efe0ea27fb1b3ab7741907dffeaad78
https://etherscan.io/address/0x630d98424efe0ea27fb1b3ab7741907dffeaad78
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://github.com/apehex/web3-evasion-techniques/blob/main/report/forta.pdf
https://github.com/apehex/web3-evasion-techniques/blob/main/report/forta.pdf
https://www.ledger.com/academy/glossary/honeypot-crypto-scam
https://www.ledger.com/academy/glossary/honeypot-crypto-scam
https://forta.notion.site/Evasion-Bounty-Fake-Standards-673a496a7684498a80ca4d07060fb160
https://forta.notion.site/Evasion-Bounty-Fake-Standards-673a496a7684498a80ca4d07060fb160
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://blocksec.com/explorer
https://twitter.com/peckshield/status/1630490333716029440
https://explorer.sim.io
https://explorer.sim.io
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.trailofbits.com/2020/12/16/breaking-aave-upgradeability/
https://blog.trailofbits.com/2020/12/16/breaking-aave-upgradeability/
https://medium.com/immunefi/teller-bug-fix-postmorten-and-bug-bounty-launch-b3f67a65c5ac
https://medium.com/immunefi/teller-bug-fix-postmorten-and-bug-bounty-launch-b3f67a65c5ac
https://iosiro.com/blog/openzeppelin-uups-proxy-vulnerability-disclosure
https://iosiro.com/blog/openzeppelin-uups-proxy-vulnerability-disclosure
https://medium.com/immunefi/harvest-finance-uninitialized-proxies-bug-fix-postmortem-ea5c0f7af96b
https://medium.com/immunefi/harvest-finance-uninitialized-proxies-bug-fix-postmortem-ea5c0f7af96b
https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a
https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a
https://docs.openzeppelin.com/contracts/3.x/api/proxy
https://docs.openzeppelin.com/contracts/3.x/api/proxy
https://eips.ethereum.org/EIPS/eip-6357
https://eips.ethereum.org/EIPS/eip-6357

[56] J. Zanelatto Gavião Mascarenhas, A. Ziviani, K. Wehmuth, and A. B.
Vieira, “On the transaction dynamics of the ethereum-based cryptocur-
rency,” Journal of Complex Networks, 2020.

[57] L. Liu, L. Wei, W. Zhang, M. Wen, Y. Liu, and S.-C. Cheung, “Charac-
terizing transaction-reverting statements in ethereum smart contracts,”
in Proceedings of the 36th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’21, p. 630–641, IEEE Press,
2022.

[58] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[59] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?,” arXiv preprint arXiv:2101.05511, 2021.

[60] C. F. Torres, R. Camino, and R. State, “Frontrunner jones and the raiders
of the dark forest: An empirical study of frontrunning on the ethereum
blockchain,” arXiv preprint arXiv:2102.03347, 2021.

[61] Y. Wang, Y. Chen, H. Wu, L. Zhou, S. Deng, and R. Wattenhofer, “Cyclic
arbitrage in decentralized exchanges,” Available at SSRN 3834535, 2022.

[62] A. Capponi, R. Jia, and Y. Wang, “The evolution of blockchain: from
lit to dark,” arXiv preprint arXiv:2202.05779, 2022.

[63] J. Piet, J. Fairoze, and N. Weaver, “Extracting godl [sic] from
the salt mines: Ethereum miners extracting value,” arXiv preprint
arXiv:2203.15930, 2022.

[64] B. Weintraub, C. F. Torres, C. Nita-Rotaru, and R. State, “A flash (bot)
in the pan: Measuring maximal extractable value in private pools,” arXiv
preprint arXiv:2206.04185, 2022.

[65] X. Lyu, M. Zhang, X. Zhang, J. Niu, Y. Zhang, and Z. Lin, “An empirical
study on ethereum private transactions and the security implications,”
arXiv preprint arXiv:2208.02858, 2022.

[66] W. Zhang, L. Wei, S.-C. Cheung, Y. Liu, S. Li, L. Liu, and M. R.
Lyu, “Combatting front-running in smart contracts: Attack mining,
benchmark construction and vulnerability detector evaluation,” IEEE
Transactions on Software Engineering, vol. 49, no. 6, pp. 3630–3646,
2023.

[67] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” Proceedings of the ACM
on Programming Languages, 2017.

[68] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, ACM, 2016.

[69] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference, ACM, 2018.

[70] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2018.

[71] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium, 2018.

[72] ConsenSys, “Mythril classic.” https://github.com/ConsenSys/mythril-
classic, 2022.

[73] TrailOfBits, “Manticore: Symbolic execution tool.” https://github.com/
trailofbits/manticore, 2022.

[74] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB),
IEEE, 2019.

[75] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Proceedings of the 25th Annual Network and
Distributed System Security Symposium, 2018.

[76] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018.

[77] J. Frank, C. Aschermann, and T. Holz, “{ETHBMC}: A bounded model
checker for smart contracts,” in 29th USENIX Security Symposium, 2020.

[78] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), IEEE, 2018.

[79] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in 2022
IEEE Symposium on Security and Privacy (SP), IEEE, 2022.

[80] W. Zhang, Z. Zhang, Q. Shi, L. Liu, L. Wei, Y. Liu, X. Zhang, and
S.-C. Cheung, “Nyx: Detecting exploitable front-running vulnerabilities
in smart contracts,” in 2024 IEEE Symposium on Security and Privacy
(SP), pp. 146–146, IEEE Computer Society, 2024.

[81] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2018.

[82] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020.

[83] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020.

[84] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020.

[85] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dynamic
data-flow analyses,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2021.

[86] A. Groce and G. Grieco, “echidna-parade: a tool for diverse multicore
smart contract fuzzing,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

[87] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[88] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard: find-
ing reentrancy bugs in smart contracts,” in IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion),
IEEE, 2018.

[89] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), IEEE, 2021.

[90] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi,
“Evmfuzzer: detect evm vulnerabilities via fuzz testing,” in Proceedings
of the 2019 27th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering,
2019.

[91] M. Rodler, D. Paaßen, W. Li, L. Bernhard, T. Holz, G. Karame, and
L. Davi, “Ef/cf: High performance smart contract fuzzing for exploit
generation,” arXiv preprint arXiv:2304.06341, 2023.

[92] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International Conference on Principles of
Security and Trust, Springer, 2017.

[93] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) incidents,” arXiv preprint arXiv:2208.13035, 2022.

[94] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. J. Knottenbelt, “Sok: Decentralized finance (defi),” arXiv preprint
arXiv:2101.08778, 2021.

[95] L. Heimbach and R. Wattenhofer, “Sok: Preventing transaction reorder-
ing manipulations in decentralized finance,” in 4th ACM Conference on
Advances in Financial Technologies (AFT), 2022.

[96] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” in Financial Cryptography and
Data Security: FC 2019 International Workshops, Springer, 2020.

[97] N. Ivanov, C. Li, Q. Yan, Z. Sun, Z. Cao, and X. Luo, “Security
threat mitigation for smart contracts: A comprehensive survey,” ACM
Computing Surveys, 2023.

[98] M. Zhang, X. Zhang, J. Barbee, Y. Zhang, and Z. Lin, “Sok: Security
of cross-chain bridges: Attack surfaces, defenses, and open problems,”
arXiv preprint arXiv:2312.12573, 2023.

[99] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in Proceedings of the 45th International Conference
on Software Engineering, 2023.

13

https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore

	Introduction
	Preliminaries
	Ethereum Basics
	Proxy Patterns

	Data Collection
	ProxyEX
	Function Identifier
	Proxy Scanner
	Logic Contract Extractor

	Correctness of ProxyEX
	Datasets

	Evaluation Results
	RQ1: Statistics
	Bytecode Duplication
	Transaction Count
	Lifespan

	RQ2: Purpose
	Upgradeability
	Extensibility
	Code-sharing
	Code-hiding

	RQ3: Bugs and Pitfalls
	Proxy-logic Collision
	Logic-logic Collision
	Uninitialized Proxy

	Discussion
	Threats to Validity
	Usefulness

	Related Work
	Conclusion
	References

