
OS-level Side Channels without Procfs:
Exploring Cross-App Information Leakage on iOS

Xiaokuan Zhang∗, Xueqiang Wang†, Xiaolong Bai‡, Yinqian Zhang∗§ and XiaoFeng Wang†
∗{zhang.5840,zhang.834}@osu.edu, The Ohio State University
†{xw7,xw48}@indiana.edu, Indiana University at Bloomington

‡bxl12@mails.tsinghua.edu.cn, Tsinghua University

Abstract—It has been demonstrated in numerous previous
studies that Android and its underlying Linux operating systems
do not properly isolate mobile apps to prevent cross-app side-
channel attacks. Cross-app information leakage enables malicious
Android apps to infer sensitive user data (e.g., passwords),
or private user information (e.g., identity or location) without
requiring specific permissions. Nevertheless, no prior work has
ever studied these side-channel attacks on iOS-based mobile
devices. One reason is that iOS does not implement procfs—
the most popular side-channel attack vector; hence the previously
known attacks are not feasible.

In this paper, we present the first study of OS-level side-
channel attacks on iOS. Specifically, we identified several new
side-channel attack vectors (i.e., iOS APIs that enable cross-app
information leakage); developed machine learning frameworks
(i.e., classification and pattern matching) that combine multiple
attack vectors to improve the accuracy of the inference attacks;
demonstrated three categories of attacks that exploit these vectors
and frameworks to exfiltrate sensitive user information. We
have reported our findings to Apple and proposed mitigations
to the attacks. Apple has incorporated some of our suggested
countermeasures into iOS 11 and MacOS High Sierra 10.13 and
later versions.

I. INTRODUCTION

Android and iOS are the two most popular operating
systems (OS) used in smartphones, wearables, and tablets.
Security of such mobile systems has been widely studied in
the past decade, mostly in the context of Android [31], [36],
[42], [45], [66], [67], with some limited effort on iOS [34],
[37]. Of particular interest here are a series of side-channel
attacks, which empower an untrusted third-party app (e.g., free
games) to infer private user information by monitoring the
execution of OS services or trusted apps (e.g., banking apps).
Side-channel attacks typically do not exploit software vulnera-
bilities to acquire secret data directly. Instead, confidential user
information is inferred from vectors (features of the target as

§Corresponding author.

observed by the adversary) that are considered harmless but
actually reveal some artifacts of the target app or service’s
executions. Examples of such vectors include the use of shared
CPU caches (i.e., cache side channels), mobile sensors (i.e.,
sensor-based side channels), and public APIs provided by the
OS to third-party apps for querying the status of the mobile
device, the OS, or other apps (i.e., OS-level side channels).

This paper focuses on OS-level side channels. So far, this
line of research has only been conducted on Android, with
numerous studies [31], [36], [42], [45], [64], [67] showing that
the OS and its underlying Linux kernel fail to properly control
the information leaks from seemingly harmless sources—
procfs, a pseudo filesystem available on UNIX-like op-
erating systems (including Android) to export some kernel
statistics (e.g., virtual and physical memory, CPU and network
usage) to the user space. These statistics can be classified
into two categories: per-process statistics and global statistics.
Per-process statistics reveals the information pertaining to
a specific process, while global statistics reports aggregated
information from all processes and the entire kernel. Most
existing side-channel attacks exploit per-process statistics in
procfs [31], [42], [45], [64], [67].

Unlike Android, iOS is known for its more aggressive
security controls, which render many attacks that succeed on
Android less likely to happen on iOS. Specific for the OS-level
side-channel threats, the iOS kernel is built on top of Mach [22]
and FreeBSD [38], which does not have a procfs, essentially
shutting down the main avenue for the Android-style inference
attacks. Although a small amount of procfs-alike resources
are still available on iOS (e.g., through sysctl()) [15],
they are under heavy scrutiny and facing increasingly stringent
restrictions: as a prominent example, since iOS 9, Apple
has modified sysctl() to disallow a sandboxed app from
accessing information about other running processes [16]. As a
result, it is impossible today to conduct a side-channel analysis
on iOS by exploiting per-app statistics, which completely
defeats most demonstrated attacks on Android [31], [42], [45],
[64], [67]. Therefore, to our knowledge, there was no reported
OS-level side-channel attack on iOS.

As such, in this paper, we make the first step towards
understanding cross-app side-channel risks on iOS. More
specifically, we started with an inspection of new attack vectors
on iOS. Our study has led to the discovery of several APIs
reporting global statistics of the entire system, including CPU
usage, memory usage, network usage, and storage usage, with
examples of a subset of them described in Sec. III. These

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23260
www.ndss-symposium.org

findings, though new to the research community, are not
extremely surprising, as such functionalities are supposed to
be provided by the OS to the userspace. Also, as one can
anticipate, these global statistic counters are noisier than per-
app statistic counters; when used individually in side-channel
attacks, they do not expose sufficiently intelligible information
about a specific target (e.g., a process). However, our study
shows that collectively, these counters can actually be utilized
together to deduce surprisingly detailed user data, once we
have addressed the machine learning challenges in integrating
the information from these individual sources, which have
never been considered in previous side-channel studies.

Specifically, we developed machine learning frameworks
that combine multiple noisy side-channel attack vectors in a
novel way. Particularly, we designed a classification framework
that samples time series of the data from 6 global statistic
counters, reduces their dimensions and further extracts their
key features from training traces by using Symbolic Aggregate
approXimation (SAX), Bag-of-Pattern (BOP) representation,
and Support Vector Machine (SVM) classifiers. Also we de-
veloped a pattern matching framework that employs a kNN
classifier with a multi-dimensional Dynamic Time Wrapping
(DTW) algorithm to calculate distance metrics. Our evaluation
demonstrates that these frameworks are effective (high accu-
racy), efficient (short execution time), and robust (e.g., models
trained on one device can be used on other devices, as shown
in Sec. VII).

More concretely, we demonstrate three categories of attacks
on iOS 10, the latest iOS version as of the time of writing
this paper: classifying user activities, detecting sensitive in-
app activities, and bypassing iOS sandbox restrictions to
infer cross-container file existences using a timing-based side
channel. Specifically, we found that an unprivileged malicious
app is able to accurately identify the foreground running apps,
the websites Safari visits, and the location searched through
Apple Maps. It can further collect enough information to link
Bitcoin addresses, Venmo users, and Twitter users to a device,
and identify a set of installed sensitive apps that reveal private
information about the user, etc.

Although the focus of our study is iOS, our findings raise
a broader question important to the design of the operat-
ing systems hosting mutually-distrusting entities: What is the
proper means to isolate these entities and prevent cross-app
side channel leaks, given the huge amount, complex interfaces
between them? As we can imagine, this question will be very
important to iOS, to Android, and to other platforms such as
clouds and IoT frameworks.

Responsible disclosure and Apple’s adoption of our coun-
termeasures. In May 2017, we reported our demonstrated
side-channel attacks to Apple, which, slightly to our surprise
(given the conventional attitudes from other vendors towards
side channels), attached high importance to our findings and
assembled a team of engineers from different groups to spe-
cially work on mitigations of these side-channel threats for the
next iOS release. We had several technical meetings with these
engineers and discussed several solutions to the problems. As
we will detail in Sec. VIII, some of the countermeasures have
been adopted in iOS/MacOS to defend against our attacks. We
are glad to see that Apple is seriously committed to mitigating

these threats by making several major updates in the OS kernel.
The threats have been fully addressed in iOS 11.1 and macOS
High Sierra 10.13.1.

Contributions. In summary, our paper makes the following
technical contributions:
• New attack vectors. We identified several iOS APIs that can

be exploited for side-channel inferences, which suggests
that even on an OS without procfs, it is very challenging
to eliminate all vectors for cross-app information leaks.

• New attack methods. We developed new frameworks to
integrate the thin information recovered from individual
vectors into serious side-channel leaks, by leveraging a
set of machine learning techniques. We also demonstrated
the robustness of our approach by training and testing on
different devices.

• New targets. We presented the attacks on a set of targets
never exploited in previous side-channel studies, such as
location inference through map loading, user identification
via Bitcoin transaction correlation, etc.

• Proposed countermeasures integrated in iOS and MacOS.
Through responsible disclosure and technical discussions
with Apple, some of our proposed countermeasures have
been integrated into iOS 11.1 and macOS High Sierra
10.13.1.

Roadmap: Sec. II summarizes the background of iOS cross-
app isolation. Sec. III highlights our threat model and lists
several new side-channel attack vectors on iOS. Three attacks
exploiting these attack vectors were presented in Sec. IV,
Sec. V, and Sec. VI. Practical issues related to the attacks
are discussed and evaluated in Sec. VII. We discuss and
evaluate several countermeasures to the demonstrated attacks
in Sec. VIII, and summarize related work in Sec. IX. Sec. X
concludes the paper.

II. BACKGROUND: IOS CROSS-APP ISOLATION

Side channels on Android mobile devices have been ex-
tensively studied in the past [31], [36], [42], [45], [66], [67],
however, little or even no attention has been paid to iOS cross-
app side channels. In this section, we first briefly introduce the
cross-app isolation on iOS. We then describe how side-channel
attacks on iOS devices are different from those on Android,
and why they are more challenging to conduct in practice.

Sandboxing with respect to file access. Each iOS app is
by default confined in a sandbox at installation. A sand-
box specifies how an app is allowed to access filesys-
tem resources and communicate with other apps or in-
teract with the operating system. Particularly, the app is
only allowed to access files in its own bundle container
directory and a few other public directories [3]. The
path name of each bundle container directory contains a
UUID, which is a 32-digit random hexadecimal string (e.g.,
7E698227-C8B6-4044-A215-B4CBCB8A97AB). Cross-
container file accesses are prevented by both the randomness
of the UUIDs and the sandbox isolation.

System resources. The Info.plist file of an application
describes system resources that are needed for an application
to run properly. The first time an app attempts to access certain
sensitive system resources (e.g., Location Services), the user is

2

asked to grant the permission explicitly. Only apps authorized
by the user are allowed to access the specific resource. This
user-centric access control can be configured on a per-app
basis. Since iOS 8, Apple has introduced finer-grained access
control policies to some system resources. For instance, users
can control an app to access Location Service at any time (i.e.,
Always) or only when the app is in the foreground (i.e., While
Using) [7].

Cross-app communication. Apps commonly communicate
with each other through schemes. An app may register a cus-
tom URL scheme with the system (through its Info.plist
file). Other apps may use openURL API to send data to the
app who has registered the custom URL. For example, URL
scheme “comgooglemaps://?center=[Latitude,Longitude]” will
launch Google Map and navigate the maps’ center to the
specified location. Another means to share data between apps
is the pasteboard. The general pasteboard provides system-
wide read/write access to all apps, while the named pasteboard
is only accessible by apps with same team ID.

App vetting. Information leakage may happen when iOS APIs
are used in unexpected manners or when some undocumented
APIs are used by a malicious app. To defeat these API-misuse
attacks, all iOS apps, before reaching the market, must be
vetted by Apple, who will examine both the functionality of
the app and its potential malicious activities [21]. Although
Apple’s code review process is kept private and continuously
changing, it is believed this process includes determining
whether private APIs are used by the submitted apps [28],
whether private data is collected and transmitted without
notifying the users [21], etc. Apps that fail the vetting will
be rejected by Apple.

III. SIDE-CHANNEL ATTACK VECTORS ON IOS

In this section, we describe the threat model considered in
this paper, and new attack vectors that we have discovered to
enable OS-level side-channel attacks on iOS without procfs.

A. Threat Model

In this paper, we only consider side-channel information
leakage on the OS level. That is, we aim to explore the
API interfaces that allow one iOS app to query information
regarding the entire OS or a particular app running on the
same device (e.g., iPhones and iPads), and the methods to
exploit the leakage to infer private information about the user
of the device. More particularly, we assume that the user
downloads a monitoring app from iOS App Store. As will be
discussed in Sec. VII, our monitoring app disguises itself as an
audio player, and registers the Audio background mode in its
Info.plist file to run in the background. No additional
permission request needs to be made at runtime. We will
show how this monitoring app can utilize some OS-level side-
channel attack vectors on iOS (to be discussed shortly) to
breach user privacy. Out of the scope are CPU cache side
channels [66], electronic magnetic side channels [24], [39],
[40], and mobile sensor based side channels [50], [52], [53],
[57]. As they explore leakage through micro-architectures,
electronic magnetic emission, or device orientation, which are
not specific to iOS.

B. New Attack Vectors

We have identified several new attack vectors on iOS
that enable cross-app information leakage. Particularly, these
vectors will allow an iOS app to learn the global usage
statistics of memory and network resources, and the existence
of files without any access permissions.

Memory resources: host_statistics64(). The global usage of
memory resources, such as the number of free memory pages
(free_count) and the cumulative number of page faults
(faults), can be queried through this API. Apps do not need
special entitlements to access host_statistics64(),
which is an interface used by iOS apps to access memory
information of the current device. We statically analyzed 7,418
iOS apps1 using a static tool based on Capstone [6], and found
that 1,230 of them include this API.

Network resources: getifaddrs(). The usage of the global
network resource can be queried through this API without spe-
cial entitlements. The getifaddrs() API returns a linked
list data structure describing each of the network interfaces
of the local system, by storing the address of the first item
of the list in *ifap, the argument passed to the API. One
can iterate through ifap->ifap_next to enumerate all the
interfaces. For each item in this linked list, one can read
ifap->ifa_data to learn the statistics of the traffic that
goes in or out through this interface. In particular, we collected
the traffic of en0 (WIFI interface) for analysis in Sec. IV.
Other active interfaces include lo0, ipsec0, pdp_ip0, etc.
getifaddrs() is widely used by both app developers and
third-party libraries. In our static analysis, we found 3,955 out
of 7,418 apps include the API in the apps. iOS apps use this
API in many different ways. For example, an app could collect
network-related information and upload it to a remote server
for crash/error reporting purposes. It may also use the MAC/IP
as an identifier of the device.

File Systems: [NSFileManager fileExistsAtPath:]. When an
app has proper permission to access a file or directory, the API
will return to the caller whether the queried file or directory
exists. However, when an app does not possess the required
permission, the return value will always be FALSE. This
sandbox rule protects sensitive files from being accessed by un-
privileged third-party apps. [NSFileManager fileExistsAtPath:]
is a frequently used Objective-C API, which is referenced by
7,331 of 7,418 apps. For example, to avoid exceptions, an app
may check whether a file exists before reading from it.

However, we found that this protecting mechanism can
be circumvented using a timing channel. Though the result
will always be FALSE when the caller doesn’t have proper
permission, the execution time of this API varies vastly.
When the file or directory actually exists, the function call
will execute much slower than the cases where the file or
directory doesn’t exist at all. We conjecture this is because
when a file exists, additional permission checks will incur. This
execution time difference is big enough to be measured using
the API mach_absolute_time(). Therefore, one could
utilize this timing channel to tell whether a file or directory
exists, regardless of the sandbox isolation. In Section VI, we

1These apps were sampled from 26 categories in Apple’s App Store; they
were updated between Jan. 1, 2016 and Feb. 23, 2017.

3

Amazon Yelp Spotify

Fig. 1: Traces of global statistics when three iOS apps,
Amazon, Yelp, and Spotify were launched and suspended in
a sequence.

show that this side channel results in severe privacy leakage
on iOS.

IV. ATTACK 1: CLASSIFYING USER ACTIVITIES

In this section, we show how a malicious iOS app may
exploit these attack vectors to classify the user’s activities on
iOS devices.

Category Feature

VM

free_count
active_count

zero_fill_count
faults

NW en0 ibytes
en0 obytes

TABLE I: Attack vectors.

We exploited 6 features
revealing the global statis-
tics of memory and net-
work resources in the at-
tacks. These features are
listed in Table I. Specif-
ically, we collected data
from 4 features that de-
scribe statistics of virtual
and physical memory us-
age (i.e., category VM), in-
cluding free_count (the number of free physical mem-
ory pages currently available in the operating system),
active_count (the total number of pages currently in
use and pageable), zero_fill_count (the number of
zero-fill pages), and faults (the cumulative number of
page faults). These data were collected by repeatedly call-
ing host_statistics64(). By extracting data from
getifaddrs() in similar manners, we collected data from 2
features describing network usage (i.e., category NW): ibytes
and obytes, which report the cumulative number of bytes
received and sent, respectively, from the Wifi interface en0.

Fig. 1 shows the data traces of these 6 features (with each
point showing the difference between two consecutive data
points of the raw data) collected by an iOS app running in
the background, when three apps, Amazon, Yelp, and Spotify,
were launched and then suspended (pressing the Home button)
in a sequence. Each data point in the figures shows the value
change of the feature compared to the last reading. The APIs
were called periodically at the frequency of 1000 times per
second. We can see from the figure that the user’s activities

can be roughly identified by eyeballing the traces of memory
and network statistics. More specifically, when an app is
launched, the total number of free physical memory pages (i.e.,
free_count) drops, the page fault count increases dramat-
ically in a short period, and intense inbound and outbound
network activities are observed (see Fig. 1). When the Home
button is pressed, typically some memory (e.g., increased value
of free_count) and network activities can be observed.

These results suggest that it is possible to infer user’s
activities from these global statistic counters. However, unlike
previously demonstrated side-channel attacks that sample data
from procfs per-app statistics, global counters are much
noisier. By eyeballing the traces from data collected from
multiple runs of the same experiments, it seems very chal-
lenging to exploit any of these features alone to successfully
identify the user’s activities related to a specific app. Indeed,
as we will show in Fig. 3, none of these features can be used
individually to achieve high accuracy in the classification of
the mobile user’s activities. As such, a classifier that combines
these features together must be built.

Prior studies that analyze side-channel data traces for in-
ference attacks typically only utilize one data trace to perform
the attacks [32], [36], [41], [48], [50], [53]. In these attacks, a
single side-channel trace is typically sufficient for the intended
attack goals. The challenge we face when conducting side-
channel analysis with multiple side-channel traces (with each
trace being a time series of data points) is to reduce the
dimension of data for classification. Towards this end, we
designed a new classification framework to perform side-
channel inference attacks with multiple data traces.

A. Attack Methods

We developed a classification framework that maps a set
of l time series of n side-channel observations to a “label”, L,
which corresponds to some user’s activity on the device. More
formally, {

X1
t , X

2
t , · · · , X l

t

}
⇒ L

where Xi
t = (Xi

t1 , X
i
t2 , · · · , X

i
tn). Our classification frame-

work consists of three major components: SAX, BOP, and
SVM, which will be explained in details below.

1) SAX: Symbolic Aggregate approXimation (SAX) was
invented by Keogh and Lin in 2002 [54]. It enables us to
encode the time series in an efficient way, without losing
important information. It requires a time series as input, and it
will output a string that represents this time series. The basic
workflow of SAX is:

(a) Dimensionality Reduction. To reduce an n-dimensional
time series to an m-dimensional time series, the n data
points are divided into m equal-sized windows, with each
window containing p = n/m data points. The mean value
of the data points within a window is calculated and a
vector of m such values becomes the new representation
of the original time series. This approach is also called
Piecewise Aggregate Approximation (PAA) [14].

(b) Z-normalization. The second step is to convert the PAA
representation into a series of numbers that follows Normal
Gaussian Distribution, i.e., N(0,1). Particularly, let the
mean and standard deviation of the time series Xti be

4

µ̂ and σ̂, Z-normalization is performed as X ′
ti = (Xti −

µ̂)/σ̂. [20]
(c) Discretization. Since the time series now follows Nor-

mal Gaussian Distribution, it is easy to determine the
breakpoints that will produce α equal-sized areas in the
Gaussian curve, where α is the number of different sym-
bols used to represent the data, thus a parameter of the
framework. For example, Table II shows the corresponding
breakpoints when α equals to 3, 4, 5. Then, according to
these breakpoints, the time series of real values is further
converted into a time series of symbols. For instance, the
values that are smaller than the smallest breakpoint will
be replaced by symbol a, the values between the smallest
and the second smallest breakpoint will be converted into
b, etc. Fig. 2 shows an example of SAX when n = 50,
p = 5, α = 3. The corresponding SAX string would be
cbbcccbaaa.

After the process of SAX, we will have a string of m
symbols that represents the original time series. The final
length of the SAX string can be adjusted by changing the
window size p. For example, when n = 100 and p = 4, the
final string length is 25; when n = 100 and p = 10, the final
length is 10.

α Breakpoints
3 -0.43, 0.43
4 -0.67, 0, 0.67
5 -0.84, -0.25, 0.25, 0.84

TABLE II: Breakpoints.

0 10 20 30 40 50
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

c b b
c

c c

b

a
a

a

Fig. 2: SAX example.

2) BOP: Bag-of-Patterns (BOP) representation was pro-
posed by Lin and Li in 2009 [46]. BOP converts an SAX-
produced string into an array of fixed length. To do so, first
a dictionary of all w-symbol SAX strings (dubbed words) is
created, where w is a parameter of the algorithm. For example,
for α = 2 and w = 2, the size of the dictionary would be
αw = 4, and the dictionary of words are aa, ab, ba, bb. Then
given the dictionary, BOP counts the frequency of different
words in the original SAX string. To avoid over-counting
trivial matches [46], i.e., similar words that are neighbors in
the original SAX strings, we count only the first occurrence
of each word. For example, given α = 2 and w = 2,
for an SAX string aabaabbbbb, the final result would be:
{aa : 2, ab : 2, ba : 1, bb : 1}. Note that bb is counted only
once. The result of this step is called “Bag-of-Patterns” for
this time series. For a collection of time series, we can use the
same dictionary to construct BOP for all of them. Therefore,
the converted BOP array is of the same size.

3) SVM: The Support Vector Machine (SVM) is one of
the most popular classifiers. In this paper, we choose LibSVM
[30] as the tool to perform SVM classification because of its
popularity and easy-to-use command-line interface.

Because our attacks will utilize multiple side-channel at-
tack vectors, the input of the SVM classification will have
multiple BOP sequences. We concatenate these sequences into
one BOP array, which we call the final BOP representation,
and then convert it into LibSVM input format. Though the
dimension of the final BOP representation may be quite large,
only a small fraction of the data points would have non-zero
values (less than 10%).

Top 1 Top 2 Top 3
0

20

40

60

80

100

A
cc

u
ra
cy

(%
)

free_count

active_count

zero_fill_count

faults

en0-ibytes

en0-obytes

All

Fig. 3: App classification result using single features.

4) Our Framework: Our framework assembles the three
parts mentioned above. The overall workflow is:

(a) Data Collection. First, we collect multiple traces for each
event that we are interested in. Because the traces are
gathered from more than one features, we will have
multiple (i.e., l) time series for each trace.

(b) Difference Calculation. As we are only interested in the
changes of the time series instead of the absolute value,
for each time series seqk (k = 1, 2, · · · , l), we calculate
the difference between every two consecutive data points,
i.e., diffk[i] = seqk[i]− seqk[i− 1].

(c) SAX Transformation. By choosing appropriate α and p, we
convert the l diff sequences into the SAX representation
as mentioned in Sec. IV-A1.

(d) BOP Construction. After a diff sequence is converted into
an SAX string, we can construct the BOP of the sequence
based on the chosen α and w using the method mentioned
in Sec. IV-A2. Because we use the BOP method, there is
no need to align different time series.

(e) SVM Classification. The last step is to convert the BOPs
into LibSVM inputs and use LibSVM to perform classifi-
cation. We choose the RBF kernel for SVM and use the
probability model, which will perform cross-validation and
output confidence estimations of classifying a test sample
into a class [12].

An alternative approach to our framework is to employ
Dynamic Time Wrapping (DTW) [25] to measure distances
between samples of multiple classes and use kNN classi-
fiers [33] to perform the classification based on the calculated
distances. Our SAX+BOP+SVM framework outperforms this
alternative approach because, according to Lin et al. [46], when
DTW is used as distance measures for large datasets, the time
complexity is prohibitive (up to two magnitudes higher time
complexity). We have evaluated and compared the execution
time of these two algorithms in our own experiments. The
results suggest the kNN classifier with DTW is too slow in our
setting. We encourage interested readers to refer to Sec. VII-F.

B. Case Studies

We demonstrate how an iOS app can infer the user’s
activities using the classification framework we laid out in
Sec. IV-A in three examples: inferring foreground apps, web-
site fingerprinting, and inferring map searches. These attack
targets are of interest to advertisement providers as they can
help profile mobile users but are not directly attainable, as iOS
disallows third-party apps to learn which app is running in the

5

foreground, which website the user visits, and which location
the user searches, for privacy concerns.

In the attacks that follow, the 6 features in Table I were
sampled periodically at the frequency of 1000 times per
second. The parameters of the classification framework were
selected as p = 5, α = 5, and w = 5. These attacks were
conducted on a jailbroken iPhone 7 that runs iOS 10.1.1. Note
the attacks do not need a jailbroken device to succeed. Using
jailbroken device merely made data collection easy to conduct,
so that we can apply the classification framework to analyze
larger datasets. In Sec. VII-D, we will show that the training
and testing of the classifier do not need to be on the same
device—the training can be done on a jailbroken device while
the attack can be conducted on a non-jailbroken one.

1) Foreground Apps: We downloaded 100 popular apps in
April 2017 from the Top charts of free apps in the App Store,
and chose another 20 pre-installed iOS apps for the experiment.
For each of these 120 apps, 10 side-channel traces were
collected, with each trace consisting of 6 time series formed
by data sampled from the 6 features in Table I. The sampling
frequency was 1000 per second. The monitoring app started
data collection before the target app was launched, but only the
first 5000 data points after the app launching were included in
the time series. It is very easy to programmatically identify the
beginning of the app launching procedure as it is quite evident
in the traces (as seen in Fig. 1). The target app was terminated
after each round of the experiment. We automated the above
experiment using Cycript [8] on the jailbroken device. We
collected in total 1200 traces (i.e., 1200 × 6 time series of
side-channel data) for the 120 apps.

Using the classification framework described in Sec. IV-A,
we randomly select 8 traces for each app as the training dataset
and the rest 2 traces for each app as the test set. Therefore,
there were 960 traces in total in the training set and 240 traces
in the test set. Given a test trace, the SVM classifier (using
LibSVM) provides a probability estimation of each class it may
belong to—the higher the probability, the more likely the trace
belongs to the corresponding class. A correct classification
means the kth class test sample was correctly classified as
the kth class; all other results are considered incorrect. In this
way, we can rank the classification results by their probability
values and evaluate the top 1, top 2 and top 3 accuracy. Top N
accuracy is the percentage of the test samples being correctly
labeled by one of the top N predicted classes by the classifier.

We first tried to classify the foreground apps using single
features. In these experiments, we still used our classification
framework, but conducted training and testing with each of
the 6 features separately (with l = 1 in each test). The
results are shown in Fig. 3. As shown in the figure, a single
feature does not carry enough information to correctly identify
a foreground app. Particularly, most features will yield a
classification accuracy of less than 25% for top 1 result;
the active_count feature has the best performance, with
slightly over 40% for top 1 accuracy and almost 60% for top
3 accuracy. In contrast, when the 6 features are combined, the
classification results (the bar labeled as “All” in Fig. 3) can
reach 89.2% for top 1 accuracy, and 97.5% for top 3 accuracy.
These results suggest that the iOS side-channel attack vectors
derived from global statistics are not as powerful as the ones
we have seen on Android, which typically leak per-app statistic

information. Therefore, successful side-channel attacks on iOS
need to combine multiple side-channel attack vectors. It also
explains why we needed a new classification framework for
conducting side-channel analysis in this paper.

We also studied if all 5000 data points in the side-channel
traces are necessary for classification. Particularly, we used
the first 1000 data points (corresponding to 1 second of
data collection) for both training and testing and show the
classification accuracy in Fig. 4a (the bars with “1s” labels).
Of course, in these experiments all 6 features were used.
Similarly, we also trained and tested with the first 2000, 3000,
4000 data points, and show the results in the same figure
(the bars with “2s”, “3s”, “4s” labels). We can see from the
figure that more data points clearly make classification results
better. But the first 2000 data points already contain a large
amount of information for classifying a foreground app: 70%
for top 1 accuracy, 79.6% for top 2 accuracy, and 85.8% for
top 3 accuracy. In contrast, using only the first 1000 data
points (i.e., 1 second of data collection) is not enough for
classifying the apps, with the top 1 accuracy being 21.3%.
This is likely because many signature activities of an app’s
launching procedure happen between 1 second to 2 seconds
after the launch begins.

2) Safari Websites: We randomly selected 100 web-
sites from Alexa Top 500 sites on the web (alexa.com/
topsites) and Moz Top 500 registered domains (moz.com/
top500). We used Cycript to automate the following process:
First, the monitoring app is run in the background; second,
after 2 seconds, Safari is launched to load a blank page; third,
after another 3 seconds, the URL bar is filled with the target
website’s URL and the “enter” button is pressed; Finally, 10
seconds after the website is visited, Safari is killed so that
the experiment can be restarted. It is worth noting that traces
collected when a website is visited from a clean state—newly
started Safari with a blank page—is not different from when
it is visited from the same tab that has already visited another
website. To illustrate this point, we show the network traces of
launching the Safari, and then visiting yelp.com (the upper
figure of Fig. 5); of visiting youtube.com first and then
yelp.com (the lower figure of Fig. 5). Though the traces
collected for yelp.com in these two cases are not exactly
the same due to noise, they are very similar in the figure (and
also in the actual data). Besides, the beginning of the website
visit is easy to identify by the monitoring app, since ibytes
and obytes counters increase drastically when it happens.

The monitoring app collects the first 5000 data points
(roughly 5 seconds) once large increases of these counters
were observed (i.e., when the “enter” button was pressed). We
collected 10 traces for each website (with 6 time series in
each trace) and the total number of traces was 1000. 8 traces
for each website were randomly selected as training data and
the rest were used as test data. So the training dataset and
test dataset contains 800 and 200 traces, respectively. Fig. 4b
shows the result of classification.

When all the 5000 data points are used for classification,
the top 1 classification accuracy could reach 68.5% and top
3 accuracy could reach 84.5%. With fewer data points (e.g.,
3000 or 4000 data points), the classification accuracy drops
only slightly. However, the top 1 classification accuracy drops
to 28.5% when only the first 2-second data is used and to 3.5%

6

Top 1 Top 2 Top 3
0

20

40

60

80

100

A
cc
u
ra
cy
(%

)

1s

2s

3s

4s

5s

(a) Foreground Apps

Top 1 Top 2 Top 3
0

20

40

60

80

100

A
cc
u
ra
cy
(%

)

1s

2s

3s

4s

5s

(b) Safari Websites

Top 1 Top 2 Top 3
0

20

40

60

80

100

A
cc
u
ra
cy
(%

)

1s

2s

3s

4s

5s

(c) Maps Searches

Fig. 4: Classification results.

Safari youtube.com yelp.com

Fig. 5: Network traces of using Safari to visit Yelp.com from
a clean state, and visit Yelp.com after visiting Youtube.com.

when only the first 1-second data is used. The results suggest
that the website loading typically takes longer than 2 seconds.

3) Apple Maps Searches: We targeted the built-in
Maps app on iOS in this attack. We selected 100
U.S. National Historic Landmarks from the travel channel
(travelchannel.com) and Wikipedia. Then we collected
10 traces when searching each of these locations using the
Maps app. We used Cycript to automate the following steps:
First, the monitoring app runs in the background; second, the
Apple Maps is launched after 2 seconds; third, the name of
the landmark is filled into the search box and the “enter”
button was pressed; finally, 10 seconds later Maps is killed.
Because the target of the attack is the search location rather
than the current location, we did not ask the app to calculate the
route. The first 5000 data points (about 5 seconds) after “enter”
was pressed were collected as the trace of the corresponding
location search. The classification test was performed in the
same way as that of the previous two examples. The results
of the classification are shown in Fig. 4c. When all the 5000
data points of the 6 features are used, the classifier achieves
an accuracy of 50% for top 1 accuracy and 79% for top
3 accuracy. What makes the results interesting is that with
only the first 4000 data points, the classification accuracy
is slightly better. This is presumably because all signature
activities happen within 4 seconds, and the 5th-second data
only add noise to the classification experiments. The drop of

classification accuracy is significant when only the first 1000
data points are used.

V. ATTACK 2: DETECTING SENSITIVE IN-APP ACTIVITIES

We call the user’s specific activities inside an iOS app the
in-app activities. In this section, we demonstrate that some
in-app activities that lead to severe privacy breach may be
identified by sampling memory statistics listed in Table III.
We also show how such incidents can be exploited in practical
attacks.

Category Feature

VM

free_count
active_count

zero_fill_count
faults

TABLE III: Attack vectors.

Prior studies such as
Zhou et al. [67] and Chen
et al. [32] have demon-
strated to use the exact net-
work packet sizes and di-
rections to match the pat-
terns of specific user ac-
tivities in web applications
or Android apps. However,
we cannot use the same algorithms in our work. We face two
new challenges that were not encountered in previous research:
(1) iOS do not provide per-app resource usage statistics
(e.g., through procfs on Android). As a consequence, the
side-channel observations are noisy. Therefore, the algorithm,
instead of expecting exact matches, must tolerate noise. (2)
Any individual attack vector may not manifest clear pattern
due to its noisy nature, we need an algorithm to exploit
multiple attack vectors at the same time. Therefore, we need to
develop a pattern matching algorithms for multi-dimensional
data traces.

A. Attack Methods

We developed a pattern matching algorithm that com-
pares two multi-dimensional data traces that are poten-
tially polluted by noise. More formally, given a sample
~Xt =

{ ~X1
t ,

~X2
t , · · · , ~X l

t

}
, where ~Xi

t = (Xi
t1 , X

i
t2 , · · · , X

i
tni

),

and a signature ~St =
{ ~S1

t ,
~S2
t , · · · , ~Slt

}
, where ~Sit =

(Sit1 , S
i
t2 , · · · , S

i
tni

) we aim to measure the distance between
the sample and the signature, d(~Xt, ~St).

To address the two technical challenges, background noise
and multi-dimensional data (with different length in each di-
mension), we adopted an extended DTW algorithm [58], which
extends the original DTW algorithm to multi-dimensional
time series. The multi-dimensional DTW, denoted DTW_I,
calculates DTW distance for each feature separately, and sums

7

up each DTW distance after normalization. So the distance
between ~Xt and ~St would be:

d(~Xt, ~St) =

l∑
k=1

1

wk
· DTW

(~Xk
t ,
~Skt
)

Here wk is the normalization factor which is determined
empirically. In our attacks, wk is the average distance between
different samples of the signature traces, { ~St}.

The extended DTW algorithm only gives us a relative
distance measure: the length of the traces and the level of
distortion will both affect the measurement. As such, a pattern
matching algorithm using a fixed threshold is likely to be very
fragile. In our attacks, to determine whether a sample matches
a signature pattern, we compare the sample with multiple
signature patterns to which this sample may be related.

B. Case Studies

We collected 10 traces for each in-app activity by sampling
the 4 features (in Table III) at the rate of 1000/s. Each trace is
comprised of 4 time series. Considering the raw data of any of
these time series ~At = {At1 , At2 , · · · , Atn}, we first calculate
the difference between Ati and At1 , i.e., Bti = Ati −At1 , to
construct a new time series ~Bt = {Bt1 , Bt2 , · · · , Btn}. Then,
to reduce the noise in the data, we only keep data points in ~Bt
that appear more than 50 times consecutively, and remove the
repeated data points. The resulting time series ~Xt is the time
series of a feature that we use to calculate the DTW distance.

1) Linking Bitcoin Addresses to iOS Devices: Bitcoin [51]
is the most popular cryptographic currency to date. A Bitcoin
coin is a chain of ECDSA digital signatures. In each trans-
action the coin is involved in, the sender signs the hash of
the previous transactions of the coin together with the public
key of the receiver using her own private key. The receiver
can verify the ownership of the coin by verifying the digital
signature using the sender’s public key. To protect the privacy
of the users, the identities of the senders and the receivers in
a transaction are replaced by the Bitcoin addresses. A Bitcoin
address is the hash value of a public key that the user holds.
Each user may possess one or more Bitcoin addresses, thus
public/private ECDSA key pairs. Since the coins stored in one
address will be spent in their entirety during one transaction,
unspent changes will be saved in the original Bitcoin address
or, for many Bitcoin wallets, a newly created Bitcoin address.

The target. Anonymity and privacy are desired properties of
the Bitcoin network. Neither the payers nor the payees in any
transactions should be identified in the public record. Although
Bitcoin’s strong user privacy is claimed in the original paper
of Bitcoin [51], many previous studies have demonstrated that
it is still possible to cluster Bitcoin addresses belonging to
the same user by conducting transaction graph analysis, and
further link these addresses to online merchants because some
of their addresses are publicly known [27]. Nevertheless, it is
still considered impossible to de-anonymize arbitrary Bitcoin
users [49]. The goal of our side-channel analysis is to link the
Bitcoin transactions with the monitored mobile user, thus de-
anonymizing the transactions that belong to the owner of the
iOS device.

Our attack. The high-level idea of our attack is to detect
the user’s action of making payment with the Bitcoin wallet
software on the victim iOS device and record the timestamp
of the transaction. Because all successful transactions are
included in a public record that can be looked up easily, the
adversary is able to correlate the online transaction records
with the side-channel detected Bitcoin activity. However, there
are a few complications that require us to develop a more
polished algorithm than this basic solution. First, because the
number of transactions in each block is large (about 2000 as
of May 2017 [26]) and the side-channel measured timestamp
may be off by seconds, more than one transactions (e.g., in our
analysis, up to hundreds) in the online record can be linked
to the detected Bitcoin transaction activity. Second, the same
Bitcoin address is typically not reused, because many Bitcoin
wallets will generate a new Bitcoin address to receive the un-
spent Bitcoins for each transaction to improve the privacy and
anonymity of the users. This artifact makes directly taking the
intersection of multiple correlated transaction sets unfeasible.
Therefore, we have refined our algorithm as follows.

In order to better describe our attack, we model a Bitcoin
transaction, T, as a 3-tuple: T = (S,R, t), where S is the
set of payers of the transaction, R is the set of payees of the
transaction, and t is the timestamp of the transaction. A payer
or payee is one Bitcoin address, a. We particularly use function
T() to represent each element in the tuple. For instance, the
timestamp of a transaction is denoted by T(t) and the payer
is T(S). We also model the ith block in the blockchain, Bi,
as a 2-tuple: Bi = (T, t). We use Bi(T) to denote the set of
transactions that is associated with block Bi; Bi(t) to denote
the timestamp of the block.

Using method described in Sec. V-A, our monitoring app
can detect, and record the timestamp of, each occurrence of the
Bitcoin transaction in which the mobile user is the payer. The
timestamps of these events are denoted {t1, t2, t3, · · · , tn},
where n is the total number of times that the monitoring
app has detected such transactions. We emphasize that the
monitoring app does not need to successfully detect all trans-
actions; a non-contiguous subset is usually sufficient. Then
for each ti, i ∈ {1, 2, · · · , n}, we locate the next α blocks
in the blockchain; that is, we find a set of α blocks, Bi =
{Bj+1,Bj+2, · · · ,Bj+α}, so that Bj+1(t) ≥ ti but Bj(t) < ti.
Then we assemble a set of transactions Ti = {Tk|ti − β <
Tk(t)< ti + β ∧ Tk ∈Bi}, for each i ∈ {1, 2, · · · , n}. We
next exclude any transaction, Tk, from each Ti (Tk ∈ Ti),
iff ∃Tj ∈ Ti ∧ Tk(S) = Tj(S) ∧ k 6= j, because these
transactions are typically from high-profile accounts that reuse
their Bitcoin address to perform a large volume of transactions.
This heuristic step improves the efficiency of our attack but is
not required.

We note that α and β are parameters we can tune. We
empirically chose α = 3 and β = 15s. This is because we
find typically a transaction will have a very high probability
to appear in one of the three following blocks, and 15s is long
enough to tolerate the inaccuracy in the transaction timestamps
measured by the side-channel analysis.

Then in the list of transaction sets {T1,T2, · · · ,Tn} that is
assembled from the public record, we aim to construct the set
of 3-tuples: X = {(Tx,Ty,Tz)|Tx∈Ti ∧ Ty∈Tj ∧ Tz∈
Tk ∧ Tx(R)∩Ty(S) 6= ∅ ∧ Ty(R)∩Tz(S) 6= ∅ ∧ i <

8

Fig. 6: Blockchain wallet experiment.

j < k}. The transactions in these 3-tuples are initiated from
the monitored mobile owner with high probability. Therefore,
the Bitcoin addresses that belong to the mobile user is Y =
{a|(a ∈ Tx ∨ a ∈ Ty ∨ a ∈ Tz) ∧ (Tx,Ty,Tz) ∈ X}.

Empirical evaluation. We conducted an empirical attack on
the Blockchain Wallet iOS app. There are 11 major activities
a user can perform in this app2. We use our monitoring app to
monitor and collect traces from the four VM side-channel attack
vectors. These activities can be differentiated by observing the
patterns in the memory traces. Particularly, for each activity,
we collected 10 traces and calculated the average distance
between two traces using the extended DTW (see Sec. V-A).
The results are shown in Fig. 7a. In this heatmap, each row and
each column represent one activity, and cell (i, j) represents
the distance between the traces of activity i and activity j.
Note the distances are normalized in each row so that the
average distance between traces of the same activity is 1 and
the distances from other activities are normalized accordingly.
Therefore, the heatmap is not symmetric.

Besides the targeted activity—the make-payment
activity—we are also interested in the return-to-home-
screen activity, because this activity indicates the foreground
app is no longer the Blockchain Wallet app. This is important
because with the capability to detect if the app has been
suspended, the adversary only needs to match the signature
of an in-app activity with that of other activities in the same
app, rather than comparing with all activities in all apps.
Fig. 7a clearly shows that the distance between traces in the
same activity is much closer than between those of different
activities. This is especially true for the make-payment(0)
activity and return-to-home-screen(10) activity. The
number in the parentheses is the index in Fig. 7a.

To demonstrate the attack, we created a new Bitcoin
account and initially deposited some coins in it. Then we
manually made 6 transactions at some random time during
3 days, and at the same time have the monitoring app
running in the background to collect the VM traces. By
faithfully executing the aforementioned steps to collect 6
transaction sets {T1,T2,T3,T4,T5,T6} from the public
records, we were able to construct the set of 3-tuples X =
{({T1,T3,T5), (T2,T4,T5}), (T3,T5,T6}), (T4,T5,T6})}.
By linking all transactions in X , a direct acyclic graph is
constructed, which is shown in Fig. 6. Therefore the set
of Bitcoin addresses that have been used by the user is
{a0, a2, a3, a5, a7, a9, a11}. Without exception, all of them
are correctly identified using the side-channel attacks and the
correlation analysis.

2) Other Targets: As shown in the Bitcoin transaction de-
anonymization attack example, the binary information leakage

2make-payment(0), menu-addresses(1), menu-backupfunds(2),
menu-merchantmap(3), menu-settings(7), menu-support(8),
send-button(6), receive-button(4), overview-button(9),
scan-QR-code(5), and return-to-home-screen(10).

via in-app activity detection can be augmented if a public
traceable dataset, even though anonymized, is available to the
adversary to correlate with the detected event. There are a few
other iOS apps that are vulnerable to this type of attacks, such
as Venmo and Twitter.

• Identify Venmo transactions and user information. Venmo is a
mobile payment service owned by Paypal. It simplifies money
transfer processes between banks and accounts. According to a
report by Forbes [4], Venmo processed about $17.6 billion US
Dollars in 2016, which is twice more than the amount in 2015.
One interesting aspect of Venmo, however, is that by default, all
transactions through Venmo are shared publicly [9]. Although
the users can change it to private, a lot of people do not do
so. As of 2014, as many as 50% of all Venmo transactions,
including their payers, payees, transferred amounts, transfer
time and memo, are publicly available [43]. In most cases, the
names of payers/payees shown in a transaction are real names.
Therefore, by detecting the payment process, it is possible to
identify the true identity of the user by matching the transfer
time with the public records, as long as the user has not
modified the default privacy setting.

In our experiment, similar to the Bitcoin example, we
generate the signature of this activity using four VM vectors,
and run the pattern matching algorithm (Sec. V-A) to detect
the activity using our monitoring app. There are 11 major
activities in the Venmo app that the user can perform, so we
collected 10 traces for each activity and computed the average
distances between the traces from the same activity and dif-
ferent activities (see Fig. 7b). The distances represented in the
heatmap are normalized using the same approach as in Fig. 7a.
The first and the last activities are make-payment(0) and
return-to-home-screen(10), respectively. It is clear
from the figure that these two activities are easily separable
from other activities using the distance measures.

• Identify Twitter user accounts. Twitter is one of the most
popular social networks in the world. According to a report
published in January 2017 [18], Twitter has 317 million
monthly active users, and there are 500 million tweets being
sent every day. Similar to the attack scenario identified by
Zhou et al. in their study of Android side channels [67], if an
adversary is able to identify the user’s action of posting tweets
in the Twitter app (using VM features), by correlating with the
online database of tweets, the user’s identity can be identified
through such side-channel analysis.

In our experiment, we have shown that the user tweet-
posting activity has a unique and stable VM signature. Using
our monitoring app and the algorithm mentioned in Sec. V-A,
we can reliably detect the time of the post-tweets(0) ac-
tivity and return-to-home-screen(7) activity (the first
and last activities in Fig. 7c). Therefore, it is also possible
to identify the user’s real identity. As of the time of writing,
the public available tweeting record is no longer complete.
Nevertheless, partially released dataset still allow correlation
analysis.

VI. ATTACK 3: BYPASSING SANDBOX RESTRICTIONS

As mentioned in Sec. III, the fileExistsAtPath API
can be used to check whether a file or directory exists even
without proper permission. In this section, we show how

9

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

1.04

1.12

1.20

1.28

1.36

1.44

1.52

1.60

(a) Blockchain Wallet

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

1.02

1.08

1.14

1.20

1.26

1.32

1.38

1.44

1.50

(b) Venmo

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(c) Twitter

Fig. 7: In-app activity heatmaps.

a malicious iOS app can leverage this API to bypass iOS
sandbox restrictions to detect the existence of cross-container
files and extract sensitive user information.

Depth File Path
4 /private/var/logs/lockdownd.log
5 /private/var/logs/AppleSupport/general.log
6 /private/var/mobile/Library/DataAccess/AccountInformation.plist
7 /private/var/mobile/Library/Spotlight/BundleInfo/InstalledApps.plist

8 /private/var/mobile/Library/Caches/com.apple.purplebuddy/
com.apple.opengl/linkCache.data

TABLE IV: Absolute file paths for Fig. 8.

A. Attack Methods

We further empirically evaluated the characteristics of
the fileExistsAtPath timing channel. Specifically, we
measured the execution time of the fileExistsAtPath
API using mach_absolute_time() on a non-jailbroken
iphone7 device running iOS 10.2.1, while varying the depths
of the input file paths. The tested file paths are listed in
Table IV. The iOS app making the API calls did not have
the permission to access these files, so the query to the
fileExistsAtPath API all failed. For each file path, we
run 100 trials. In each trial, we queried the API 50 times
and calculated the mean value of the execution time. We
compute the mean and standard deviation of these 100 trials
and plot them in Fig. 8. Also shown in the figure are the
execution times of the API with inputs of some non-existent
files at the same depth as the tested file paths. From Fig. 8,
we can see that the two cases (i.e., existent vs. non-existent)
are clearly distinguishable. Note the unit of the y-axis of
the figure is the Mach Absolute Time Unit, which is a value
returned by mach_absolute_time(). This unit time is
CPU-dependent, which can be converted to nanoseconds using
a system-provided API [17].

As such, to determine the existence of a file or directory
outside an app’s sandbox, a timing channel can be reliably
constructed by the app using the differential tests that follow: It
first queries the fileExistsAtPath API with the targeted
file or directory as input 50 times and measures the average
execution time. Then it compares the average execution time
with that for a non-existent file (e.g., a file with a random
string in its name) of the same depth in the filesystem. In this
way, the timing difference will reliably tell whether the file
exists or not.

B. Case Studies

4 5 6 7 8
Depth

0

200

400

600

800

1000

M
a
ch
 A
b
so
lu
te
 T
im

e
 U
n
it

Existent

Non-Existent

Fig. 8: Execution time of
FileExistAtPath when
changing the depth.

By utilizing the
fileExistsAtPath
timing channels, a
malicious iOS app
could bypass the sandbox
restrictions enforced
by iOS and learn
information about other
apps. Specifically, we
show that the technique
can be used to infer that
the list of apps installed on
the device (Sec. VI-B1),
as well as information
regarding photos, videos, and voice memos (Sec. VI-B2). In
each of the attacks we show, we use the differential analysis
technique outlined in Sec. VI-A to determine the existence of
the specific files on a non-jailbroken iphone7 with iOS 10.2.1.
In all tests, we can reliably detect the file existence without
any false detection.

1) List of installed apps: Apps that a user has installed on
the phone sometimes reveal the user’s life styles or personal
choices of vendors (e.g., Verizon, Marriott, Chase, Hertz,
United, etc). These apps can be used to profile the user of
the device, which can be valuable to ads providers. Never-
theless, the existence of certain apps may leak more sensitive
information about the user. For instance, the fact that a user
has installed Hornet, a same-sex-dating app, may reveal the
user’s sex orientation; and Pregnancy+, as its name indicates,
may suggest that the user is trying to get pregnant or already
pregnant. We list some of these sensitive apps in Table V.

To learn what apps have been installed on the same
device, one approach is to use a private API in the
LSApplicationWorkspace class, which provides a list of
installed apps [11]. However, the use of this private API will
be detected in the vetting process and result in rejection of the
app. Another method is through the canOpenURL API (i.e.,
[UIApplication canOpenURL:]), which allows an app
to check whether there is another app to handle a certain URL.
However, this API was extensively misused by developers to
obtain the installed app list. As a response, since iOS 9, Apple
has imposed limits on the use of this API by requiring explicit
declaration of all the targeted schemes in the plist file [2].

10

Despite Apple’s effort of stronger cross-app isolation, we
found it is still possible for third-party apps to stealthily
query whether a certain app has been installed using the
fileExistsAtPath timing channel, if one of the two
following conditions is met for this targeted app: (1) it requires
permission for sending push notifications, or (2) it dynamically
registers home screen quick actions.

• Push notifications. When an iOS app that requires send-
ing push notifications is launched for the first time, it
will prompt the user for permission to send notifications.
On iOS 9, no matter whether the user grants the permis-
sion or not, a .pushstore file with the bundle identifier
as its name will be created in a specific directory (e.g.,
/var/mobile/Library/SpringBoard/PushStore/
com.google.Gmail.pushstore for the Gmail app). On
iOS 10, this file will be created the first time the app receives
a push notification. A large portion of iOS apps request push
notification. Particularly, we conducted a static analysis on the
dataset of 7,418 apps, and found that 4,980 (67.13%) of them
may use local notification to alert user about in-app information
and 4,438 (59.83%) may use remote notification to handle
messages pushed from a remote server. The union of the two
sets are 5,886 (79.35%) apps. We further randomly installed
150 apps from iOS App Store and found that push notification
was requested by 67 (i.e., 44.7%) of these apps.

• Home screen quick actions. The feature of home screen quick
actions was first introduced in iOS 9 with 3D-touch enabled
iphone 6S and iphone 6S plus in September 2015 [1], [10]. It
allows users to have quick accesses to certain functionalities
of an app by long-pressing the icon on the home screen,
without opening the app. There are two ways to register
quick actions: static (by defining them in Info.plist) or
dynamic (by defining them in code). Through our experiment,
we found that when an app which registers home screen
quick actions dynamically is installed and launched for the
first time, a new .plist file will be created in a specific
directory with its bundle identifier as the name of the file (e.g.,
/var/mobile/Library/SpringBoard/Application
Shortcuts/com.google.Gmail.plist for the Gmail
app). Though this new iOS feature brings convenience to
users, it also introduces a vector for information leakage. We
can identify the installed apps by detecting whether a specific
plist file has been created. We studied 150 top ranked apps
(i.e., top 150 apps in App Store’s “Top Charts”), and 47 of
them (31.33%) have dynamically registered quick actions.

We conducted a measurement study of the aforementioned
techniques, and discovered that most of the sensitive apps
we examined can be detected using at least one of these
approaches. In Table V, we show the results of 8 examples,
which reveal different aspects of a user, including sexual
orientation (Hornet), health condition (AsthmaMD), age and
education (Ready4SAT), marital status (DivorceForce), drug
condition (Weedmaps), etc.

2) Other attack targets: The fileExistsAtPath tim-
ing channel is capable of extracting other information. For ex-
ample, iOS stores photos and video clips in fixed paths and pre-
dictable names (i.e., <num>APPLE/IMG_<index>.<ext>,
where <num> is an integer starting from 100 and <index>
starts from 0001). Enumerating all possible combinations only

App Name Description A B
Hzone HIV dating app for HIV positive singles 3 7
AsthmaMD Asthma activity tracking & visualization 3 7
Hornet Social network for gay men 3 7
Pregnancy+ Pregnancy & baby developing tracker 3 7
Sugar Sense Diabetes app to track blood sugar level 3 3
Weedmaps Marijuana directory and discovery source 3 7
Ready4SAT Preparation for the SAT test 3 3
DivorceForce Community of those affected by divorce 3 7

TABLE V: Examples of sensitive apps. A: requesting push
notifications; B: dynamically registering quick actions.

needs a few seconds. Also, the pre-installed Voice Memos app
records speeches and conversations and names the recordings
using <timestamp>, which is the time of recording that
is accurate to a second. In our experiment, we found that
enumerating each second of one year (e.g., 2016) only take 80
minutes on an iPhone 7. Therefore, the same timing channel
can be used to learn the number of photos/videos/memos of
the user, and also infer the timestamps that memos were taken.

VII. PRACTICAL ISSUES

In this section, we discuss several issues in practical side-
channel attacks, and how we addressed them in our work.

A. Run Background Apps on iOS

To be able to run in the background, an app needs to specify
one of the nine “Background Modes” [5] (e.g., Audio, VoIP,
Location updates, etc) in its Info.plist file. When
it is launched for the first time, it will explicitly ask for the
user’s permission to run in the background. Some background-
mode permissions (e.g., Location updates) will need the
user to explicitly grant permission every now and then.

To periodically (in our experiments every 1ms) invoke
our monitoring thread in the background with fixed intervals,
we used the NSTimer class, which can be used to
create a timer object that expires after a certain time
interval has elapsed, and sends a specified message to
a target object [13]. In particular, we used [NSTimer
scheduledTimerWithTimeInterval: target:
selector: userInfo: repeats:] API to schedule
the timer to execute our monitoring process in a fixed interval.
Our experiments show that with an Audio background
permission, our monitoring app can keep running and
periodically invoke monitoring thread in the background to
sample the features.

B. App Store Vetting

We submitted a monitoring app that is able to conduct
all the aforementioned side-channel attacks to the App Store
for vetting. The app is disguised as an Audio Player, which
requires the Audio Background Mode for running in the back-
ground. The app collects all the 6 features from Table I. The
sampling rate of each feature is about 1000/s. We also included
the code for conducting fileExistsAtPath timing chan-
nel attacks in the monitoring app. Our app successfully passed
the vetting, which indicates that these codes are not considered
as malicious by Apple. After our app was approved by Apple,
we downloaded the app and withdrew it immediately.

11

C. Background Noise

Intuitively, because most of our attacks exploit global
statistic information of the system resources, our attacks may
be fragile. However, in the presented attacks, we did not
intentionally clean up the background apps, but the noise in
our collected traces remains manageable using our machine
learning frameworks. This is because iOS itself suspends apps
when they run in the background, unless the app specially
requests background permissions. Therefore, iOS devices
are relatively quieter than Android devices, which greatly
facilitates side-channel attacks.

D. Cross-device Attack Feasibility

To demonstrate the practicality of our attacks, we manually
collected traces on another non-jailbroken iPhone 7 running
iOS 10.2.1. Then, we use previously collected data as training
set (for classification) or signature (for pattern matching) to
re-evaluate the attacks. To make sure the sampling rate on
different devices and different iOS versions remain the same
(about 1000 times/s), our monitoring app self-adjusts the
sampling interval (specified using NSTimer) the first time
it runs in the background.

1) Classification: We randomly selected 20 third-party
apps from the 100 apps we used in Sec. IV. Then we manually
collected 10 traces of the app launching process for each of
them to construct a new test set, so this new test set contains
200 traces. Then, we used previous training set as mentioned
in Sec. IV and repeated the evaluation. Fig. 9a shows that
the performance of the classifier drops only slightly: 80.5%
accuracy with Top 1 result, 91.5% accuracy for Top 3, and
95.0% for Top 5. It is worth noting that the training traces
were collected 20 days before the new test set on a different
device with a different iOS version. Moreover, some of the 20
apps have been updated during the time period. For instance,
Blockchain Wallet has been updated, but we are still able to
detect the launching process of it with high confidence (90%
Top 1 accuracy for this app).

2) Pattern Matching: We recollected traces of 11 ma-
jor activities in Blockchain Wallet, 5 traces each. We ran-
domly selected 5 previously-collected traces of each activity
(Sec. V-B1) as the signature traces, and used the similar
method to draw a heatmap (Fig. 9b). This time, x-axis means
non-jailbroken (testing) device, and y-axis means jailbroken
(training) device. We normalized the distance per row using
cell(i, j) as the base (wk in Sec. V-A), so that each diag-
onal value is 1. From Fig. 9b, we can clearly see that the
make-payment(0) and return-to-home-screen(10)
and activity can be clearly distinguished. Some activities
are not so distinguishable (e.g., menu-settings(7) and
menu-backupfunds(2)) because these activities consist of
common sub-activities (i.e., clicking the menu button).

From these experiments, we show that our demonstrated
attacks are robust enough to be trained on a device owned by
the attacker and then tested using the data collected from the
victim’s device. Minor differences in the iOS versions and app
versions can also be tolerated.

1 2 3 4 5
Top N Result

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

(a) Classification.

0 1 2 3 4 5 6 7 8 9 10
Non-jailbroken Device

0

1

2

3

4

5

6

7

8

9

10

Ja
ilb

ro
ke

n
 D
e
v
ic
e

1.04

1.12

1.20

1.28

1.36

1.44

1.52

1.60

(b) Pattern matching.

Fig. 9: Cross-device evaluation.

E. Power Consumption

We evaluated the power consumption of the monitoring
app when collecting side-channel data. Specifically, we ran
the experiment on a jailbroken iphone7 with iOS 10.1.1. The
phone was fully charged before the experiment. It ran in the
foreground and read the APIs 1000 times per second. This
setup over-approximates its power consumption when it runs
in the background. The monitoring app called [UIDevice
batteryLevel] every 1 minute to keep track of the re-
maining battery level. After 60 minutes, only 5% of battery was
consumed, i.e., less than 1% per 10 minutes. The experiment
suggests that the monitoring app will not drain the battery
much faster than regular apps.

F. Execution Time of Machine Learning Algorithms

We evaluated the execution time of these algorithms with
the experiment data used in Sec. IV-B1. Our original data
contains 960 training samples; each sample has 6 time series;
and each time series consists of 5000 data points. To compare
the performance of these two algorithms, we report in Table VI
the execution time of classifying one test trace using these
two algorithms when each time series has 50, 500, 5000 data
points, and when the training set is composed of 480 or 960
training samples. Note that the kNN algorithm does not have
a training phase. It compares each testing sample with all
training samples to calculate the distance. From the table, we
can see the execution time of kNN algorithm is linear to the
number of training samples. The SVM algorithm has separated
training and testing phases. It is the execution time of the
testing phase that is of interest (reported in Table VI). The
execution time of SAX+BOP+SVM algorithm is significantly
shorter than kNN in our case; when the trace has 5000
data points, the kNN algorithm took too long to complete.
Therefore, the classification framework presented in Sec. IV-A
is much more efficient.

In contrast, the reason for selecting kNN+DTW algorithm
for the pattern matching task in Sec. V is that the number
of in-app activities for each app is small (e.g., 11 in both
Blockchain wallet and Venmo) and the number of data points
are fewer (e.g., on average 30.54 data points in our experi-
ments). To compute the distance using the multi-dimensional
DTW algorithm (with the 4 VM features) between two traces,
the average execution time was only 0.03 second.

12

data points 50 500 5000
classifier kNN SVM kNN SVM kNN SVM

480 training samples 48 0.07 536 0.11 — 0.15
960 training samples 94 0.08 1095 0.13 — 0.17

TABLE VI: Execution time comparison (in seconds).

VIII. COUNTERMEASURES

We formulated the following countermeasures and dis-
cussed them with a group of Apple engineers who were
assembled specifically to address our attacks in iOS.

• Eliminating the attack vectors. Removing the APIs that lead
to information leakage will completely eliminate the threats.
However, as stated in Sec. III, among the 7,418 iOS apps we
statically analyzed, host_statistics64() is probably
used by about 1,230 apps and getifaddrs() is potentially
used by 3,955 apps. Eliminating such widely used APIs may
cause significant compatibility issues. This concern has also
been confirmed by Apple engineers, who believed it is difficult
to simply remove these APIs from iOS because they are used
by some high-profile apps.

• Rate limiting. In our (first two categories of) attacks, the
monitoring app calls the APIs at a rate of 1000 times per
second. It is intuitive that by limiting the rate at which an
app can query the sensitive APIs, most applications may still
work while the attacks can be mitigated. We envision rating
limiting can be implemented by caching the return values in the
kernel and updating the cached value only N times per second.
Then in our experiments, every (1000/N)th data point of our
original data is preserved. To evaluate the effectiveness of these
methods, we filtered data points accordingly for both training
and testing, and then repeated the experiments in Sec. IV-B1.
The top 1, 2, and 3 classification accuracy with the maximum
sample rate of 5, 10, 100, 500, and 1000 per second are shown
in Fig. 10a. From the figure we can see that a sample rate of 10
per second is still high enough to conduct side-channel attacks,
with top 1 accuracy of 69.6% and top 3 accuracy of 78.3%.
This result also suggest our classification framework remains
robust even with less data. The effectiveness of the attacks
decreases dramatically when the sample rate drops to 5/s,
however. We have discussed these ideas and results with Apple
and were informed that rate limiting has been implemented in
iOS 11.1 for host_statistics64(), as well as macOS
High Sierra 10.13.1, watchOS 4.1 and tvOS 11.1.

• Coarse-grained return values. Another approach to coun-
tering the attacks is to reduce the granularity of the return
values. For instance, instead of returning the exact number
of page faults, free pages, or bytes sent/received from the
Wifi interface, etc., the last 1, 2, or 3 decimal digits of
the values can be masked. We evaluated this method for the
experiment we did in Sec. IV-B1 by reducing the granularity
of all 6 features. We show the top 1, 2, and 3 accuracy of the
classification in Fig. 10b. As seen in the figure, when reducing
the granularity of the return values, the classification accuracy
decreases accordingly. The accuracy drops to a reasonably low
level when masking 3 digits (28.8% top 1 accuracy and 41.3%
top 3 accuracy). Apple has implemented this approach for
getifaddrs() in iOS 11 to round the values of ibytes
and obytes to 1K Bytes.

• Runtime detection. An alternative approach is to monitor the

use of the leaky APIs while some sensitive apps are running
in the foreground. This idea has been illustrated in Android
by Zhang et al. [65] on Android using a non-privileged
guardian app. Due to the more strict cross-app isolation on
iOS, however, this task can only be accomplished by the
system itself on iOS.

• Privacy-preserving statistics reporting. Xiao et al. [61] pro-
posed a privacy-preserving procfs to mitigate side channels
resulted from the procfs in Linux OS, so that statistics
reporting through procfs satisfies d-privacy, a variation of
differential privacy. Apple could modify the OS kernel and
implement similar functionalities to these leaky APIs. The
effectiveness and performance overhead of such approach on
iOS warrant further research.

• Removing the fileExistsAtPath timing channel. Apple
has made kernel-level changes in its VFS implementation to
eliminate this timing channel. We have confirmed that the
timing channel has been eliminated in iOS 11.

IX. RELATED WORK

Closest to our work is the studies of procfs side channels
on Linux and Android. Particularly, Zhang and Wang [64]
demonstrated side-channel attacks through procfs on Linux
to eavesdrop users’ keystrokes. Jana and Shmatikov [42]
exploited procfs on Linux to infer the website a Chrome
browser visits by taking snapshots of its memory footprint
(e.g., data resident size). Qian et al. [56] exploited error
packet counters reported in /proc/net/ to facilitate off-path
TCP session hijacking attacks. Zhou et al. [67] demonstrated
inference attacks using procfs on Android to learn a victim
app’s activity by learning its packet statistics. Chen et al. [31]
extracted the victim app’s CPU utilization time, memory usage,
and network usage from various procfs files to detect
activity transition and then identify the foreground activity.
Lin et al. [45] employed procfs to extract an app’s CPU
usage to detect user’s key press operation on Android. Zhang et
al. [65] explored similar channels from procfs to fingerprint
user behavior through the Android apps of IP cameras. Most
recently, Diao et al. [36] studied the use of global interrupt
counters in procfs to infer the user’s unlock patterns and
foreground apps.

Some other research has explored the use of mobile sen-
sors for constructing side channels. Besides location leakage
through GPS [44], [55], accelerometers [23], [41], [47], [53],
[59], magnetometer [57], gyroscope [50], [52], [59], and
orientation sensor [29], [63] have also been exploited to infer
the user’s location, movement, and even keystrokes (thus PIN
and passwords). These papers all studied sensor-based side
channels on Android. Unlike Android which allows a third-
party app to stealthily use these sensors, iOS requires special
entitlements to use these sensors. For instance, to acquire GPS
information, an iOS app needs to ask the user to authorize GPS
uses explicitly [7]; to use motion sensors, such as accelerom-
eters, magnetometers, and gyroscopes, starting from iOS 10,
developers must place NSMotionUsageDescription into
Info.plist [19]. However, once the permission is granted,
similar side-channel attacks may be conducted on iOS devices.

There were only a few past work exploring iOS side
channels. But their threat models were very different from

13

Top 1 Top 2 Top 3
0

20

40

60

80

100
A
cc
u
ra
cy
(%

)
5/s

10/s

100/s

500/s

1000/s

(a) Rate limiting.

Top 1 Top 2 Top 3
0

20

40

60

80

100

A
cc
u
ra
cy
(%

)

Mask 3 digits

Mask 2 digits

Mask 1 digit

Original

(b) Coarse-grained return values.

Fig. 10: Countermeasure experiments on app classification.

ours. For example, Marquardt et al. utilized accelerometers on
iPhone 4 to perform inference attack against a keyboard placed
next to the device [48], while our work targets at other apps
on the same device. Genkin et al. [39] demonstrated that using
magnetic probes placed close to the iPhone or power probes
connected to the iPhone’s USB cable, ECDSA keys used in
OpenSSL and CoreBitcoin on iPhones can be extracted. Our
attacks do not assume physical possession of the device by the
attacker. Therefore, magnetic or power attacks are out of the
scope of our threat model.

Some existing studies focus on iOS security, but not on
side-channel leakage. For example, Wang et al. [60] proposed
a method to inject exploitable vulnerabilities in iOS app to
bypass the app vetting. Xing et al. [62] discovered a series
of flaws in iOS and OS X, which allow the attacker to gain
unauthorized access to other apps’ sensitive data. Deshotels
et al. [35] examined the flaws in iOS sandbox profiles and
showed how an app can utilize them to learn sensitive infor-
mation about the user.

X. CONCLUSION

In this paper, we presented the first exploration of OS-
level side channels on iOS. Our study suggests that although
iOS does not have procfs or permit querying per-app
statistic information, there are still APIs that allow a third-
party app to query global statistics of the memory and network
resources, or to construct timing channels to break filesystem
sandboxes. We show three categories of side-channel attacks
that exploit these APIs to extract private user information,
which include inferring foreground apps, fingerprinting visited
websites, identifying map searches, de-anonymizing users of
Bitcoin Wallet, detecting installed apps, etc. These demon-
strated attacks showed that similar to Android, cross-app side-
channel attacks on iOS are also feasible. Our study has helped
Apple mitigate these security threats in iOS/MacOS.

ACKNOWLEDGEMENTS

We thank the Apple engineers who diligently worked on adjusting
iOS/MacOS to address the security issues we discovered in this paper.
We also thank the anonymous reviewers for their valuable comments.
The project is supported in part by NSF grant 1718084, 1566444,
1527141, 1618493, ARO W911NF1610127 and a Samsung gift fund.

REFERENCES

[1] “Adopting 3d touch on iphone: Getting started with 3d
touch.” https://developer.apple.com/library/content/documentation/
UserExperience/Conceptual/Adopting3DTouchOniPhone/.

[2] “Api reference: canopenurl(:),” https://developer.apple.com/reference/
uikit/uiapplication/1622952-canopenurl.

[3] “App sandbox in depth,” https://developer.apple.com/library/
content/documentation/Security/Conceptual/AppSandboxDesignGuide/
AppSandboxInDepth/AppSandboxInDepth.html.

[4] “As venmo’s popularity explodes, its customer service team scrambles
to keep up - forbes.” https://www.forbes.com/sites/laurengensler/2017/
02/14/venmo-customer-service/\#5e00fd081cfd.

[5] “Background execution,” https://developer.apple.com/library/content/
documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/
BackgroundExecution/BackgroundExecution.html.

[6] “Capstone,” http://www.capstone-engine.org.
[7] “Cllocationmanager-api reference,” https://developer.apple.com/

reference/corelocation/cllocationmanager.
[8] “Cycript - jay freeman(saurik).” http://www.cycript.org.
[9] “Helpful information - venmo.” https://venmo.com/legal/us-helpful-

information/.
[10] “Home screen actions - extensions - ios human interface guidelines.”

https://developer.apple.com/ios/human-interface-guidelines/extensions/
home-screen-actions/.

[11] “ios-runtime-headers,” https://github.com/nst/iOS-Runtime-
Headers/blob/master/Frameworks/MobileCoreServices.framework/
LSApplicationWorkspace.h.

[12] “Libsvm - faq.” http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html.
[13] “NSTimer,” https://developer.apple.com/reference/foundation/nstimer.
[14] “Piecewise aggregate approximation (paa) | sax-vsm.” https://

jmotif.github.io/sax-vsm_site/morea/algorithm/PAA.html.
[15] “/proc on mac os x - mac os x internals.” http://osxbook.com/book/

bonus/ancient/procfs.
[16] “Security and privacy changes in ios 9 | in security.” https://nabla-

c0d3.github.io/blog/2015/06/16/ios9-security-privacy/.
[17] “Technical q&a qa1398: Mach absolute time units - apple developer.”

https://developer.apple.com/library/content/qa/qa1398/_index.html.
[18] “Twitter by the numbers (2017): Stats, demographics & fun facts.” https:

//www.omnicoreagency.com/twitter-statistics.
[19] “Working with security and privacy,” https://developer.xamarin.com/

guides/ios/application_fundamentals/security-privacy-enhancements/
offline.pdf.

[20] “Z-normalization | sax-vsm.” https://jmotif.github.io/sax-vsm_site/
morea/algorithm/znorm.html.

[21] Apple, “App store review guidelines,” https://developer.apple.com/app-
store/review/guidelines/.

[22] ——, “Mach overview,” https://developer.apple.com/library/content/
documentation/Darwin/Conceptual/KernelProgramming/Mach/
Mach.html.

[23] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in the 28th Annual
Computer Security Applications Conference. ACM, 2012.

14

[24] P. Belgarric, P.-A. Fouque, G. Macario-Rat, and M. Tibouchi, “Side-
channel analysis of weierstrass and koblitz curve ecdsa on android
smartphones,” in Cryptographers’ Track at the RSA Conference.
Springer, 2016.

[25] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop. Seattle, WA, 1994.

[26] blockchain.info, “Average number of transactions per block,” https://
blockchain.info/charts/n-transactions-per-block.

[27] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in IEEE Symposium on Security and Privacy, 2015.

[28] J. Brownlee, “Apple app store now rejecting app code for private api
calls,” http://www.geek.com/apple/apple-app-store-now-rejecting-app-
code-for-private-api-calls-983411/.

[29] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion.” HotSec, 2011.

[30] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
2011, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[31] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it: UI state inference and novel Android attacks,” in 23th
USENIX Security Symposium, 2014.

[32] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
web applications: A reality today, a challenge tomorrow,” in 2010 IEEE
Symposium on Security and Privacy. IEEE, 2010.

[33] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, 1967.

[34] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private
api abuse in ios applications,” in the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015.

[35] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-
R. Sadeghi, “Sandscout: Automatic detection of flaws in ios sandbox
profiles,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016.

[36] W. Diao, X. Liu, Z. Li, and K. Zhang, “No pardon for the interruption:
New inference attacks on android through interrupt timing analysis,” in
37th IEEE Symposium on Security and Privacy, 2016.

[37] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications.” in Network and Distributed System Security
Symposium, 2011.

[38] T. F. Foundatio, “The freebsd project,” https://www.freebsd.org.
[39] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom, “Ecdsa

key extraction from mobile devices via nonintrusive physical side chan-
nels,” in ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016.

[40] G. Goller and G. Sigl, “Side channel attacks on smartphones and
embedded devices using standard radio equipment,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 2015.

[41] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accom-
plice: Location inference using accelerometers on smartphones,” in
2012 Fourth International Conference on Communication Systems and
Networks. IEEE, 2012.

[42] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in 2012 IEEE Symposium on Security and Privacy, 2012.

[43] B. Kraft, E. Mannes, and J. Moldow, “Security research of a social
payment app,” 2014.

[44] M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu, and K. Ren, “All
your location are belong to us: Breaking mobile social networks for
automated user location tracking,” in the 15th ACM international
symposium on Mobile ad hoc networking and computing. ACM, 2014.

[45] C.-C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to milk
your Android screen for secrets,” in 21st ISOC Network and Distributed
System Security Symposium, 2014.

[46] J. Lin and Y. Li, “Finding structural similarity in time series data
using bag-of-patterns representation,” in International Conference on
Scientific and Statistical Database Management. Springer, 2009.

[47] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes

evil: Keystroke inference with smartwatch,” in the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015.

[48] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone: decod-
ing vibrations from nearby keyboards using mobile phone accelerom-
eters,” in the 18th ACM conference on Computer and communications
security. ACM, 2011.

[49] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: Characterizing
payments among men with no names,” in Internet Measurement Con-
ference. ACM, 2013.

[50] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing
speech from gyroscope signals,” in 23rd USENIX Security Symposium,
2014.

[51] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf.

[52] S. Nawaz and C. Mascolo, “Mining users’ significant driving routes
with low-power sensors,” in the 12th ACM Conference on Embedded
Network Sensor Systems. ACM, 2014.

[53] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
password inference using accelerometers on smartphones,” in the 12th
Workshop on Mobile Computing Systems & Applications. ACM, 2012.

[54] P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive
time series databases,” in 2002 IEEE International Conference on Data
Mining. IEEE, 2002.

[55] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis,
“Where’s wally?: Precise user discovery attacks in location proximity
services,” in the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015.

[56] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence number
inference attack: How to crack sequence number under a second,” in
19th ACM Conference on Computer and Communications Security,
2012.

[57] C. Shen, S. Pei, T. Yu, and X. Guan, “On motion sensors as source for
user input inference in smartphones,” in IEEE International Conference
on Identity, Security and Behavior Analysis. IEEE, 2015.

[58] M. Shokoohi-Yekta, J. Wang, and E. Keogh, “On the non-trivial
generalization of dynamic time warping to the multi-dimensional case,”
in the 2015 SIAM International Conference on Data Mining. SIAM,
2015.

[59] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in the 21st Annual International Confer-
ence on Mobile Computing and Networking. ACM, 2015.

[60] T. Wang, K. Lu, L. Lu, S. P. Chung, and W. Lee, “Jekyll on ios: When
benign apps become evil.” in USENIX Security Symposium, 2013.

[61] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating storage side channels
using statistical privacy mechanisms,” in 22nd ACM Conference on
Computer and Communications Security, 2015.

[62] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu, and
X. Han, “Cracking app isolation on apple: Unauthorized cross-app
resource access on mac os,” in the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015.

[63] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in the 5th
ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM, 2012.

[64] K. Zhang and X. Wang, “Peeping Tom in the neighborhood: Keystroke
eavesdropping on multi-user systems,” in 18th USENIX Security Sym-
posium, 2009.

[65] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave me
alone: App-level protection against runtime information gathering on
android,” in 36th IEEE Symposium on Security and Privacy, 2015.

[66] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload
side channels on ARM and their implications for android devices,”
in SIGSAC Conference on Computer and Communications Security.
ACM, 2016.

[67] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: In-
ferring your secrets from Android public resources,” in 20th ACM
Conference on Computer and Communications Security, 2013.

15

