
SurfaceFleet: Exploring Distributed Interactions
Unbounded from Device, Application, User, and Time

Frederik Brudy† 1,2, David Ledo† 1,3, Michel Pahud1, Nathalie Henry Riche1, Christian Holz1,4,
Anandghan Waghmare1,5, Hemant Bhaskar Surale1,6, Marcus Peinado1, Xiaokuan Zhang1,7,
Shannon Joyner1,8, Badrish Chandramouli1, Umar Farooq Minhas1, Jonathan Goldstein1,

William Buxton1, Ken Hinckley1

1Microsoft Research, Redmond, WA, United States; 2University College London, London, UK;
3University of Calgary, AB, Canada; 4ETH Zürich, Switzerland; 5Georgia Institute of Technology, GA, USA;

6University of Waterloo, Canada; 7Ohio State University, OH, USA; 8Cornell University, NY, USA
f.brudy@cs.ucl.ac.uk & david.ledo@ucalgary.ca; surface-fleet@microsoft.com

ABSTRACT
Knowledge work increasingly spans multiple computing
surfaces. Yet in status quo user experiences, content as well
as tools, behaviors, and workflows are largely bound to the
current device—running the current application, for the
current user, and at the current moment in time. SurfaceFleet
is a system and toolkit that uses resilient distributed
programming techniques to explore cross-device interactions
that are unbounded in these four dimensions of device,
application, user, and time. As a reference implementation,
we describe an interface built using Surface Fleet that
employs lightweight, semi-transparent UI elements known
as Applets. Applets appear always-on-top of the operating
system, application windows, and (conceptually) above the
device itself. But all connections and synchronized data are
virtualized and made resilient through the cloud. For
example, a sharing Applet known as a Portfolio allows a user
to drag and drop unbound Interaction Promises into a
document. Such promises can then be fulfilled with content
asynchronously, at a later time (or multiple times), from
another device, and by the same or a different user.
Author Keywords
cross-device interaction; distributed systems; mobility
CSS Concepts
• Human-centered computing~Ubiquitous and mobile
INTRODUCTION
Modern information work increasingly relies on multi-
device workflows and distributed workspaces [66]. Mobility
of this sort implies the need for an ecosystem of technologies
[22] that transition user activity from one place to another,
whether that “place” takes the form of a literal location, a

different device form-factor, the presence of a collaborator,
or the availability of the pieces of information needed to
complete a particular task. But the problem is that—if we
consider place in such a general manner—these transitions
come at a high cost, in the currencies of both application
development and user experience.

SurfaceFleet (Fig. 1) is a working system that addresses these
challenges by de-coupling UI elements and operations from
a particular device. This system (for Microsoft Windows)
includes a resilient distributed systems foundation [24], a
preliminary toolkit, and a reference implementation of
interaction techniques that unbind interaction across multiple
dimensions of mobility in information work. So at a high
level our work contributes a new way of thinking about,
designing, and building distributed interactive systems.

Yet, once one decouples user interface mechanisms from the
current device, this also has interesting carry-on implications
for unbinding interaction from the current application, the
current user, and the current time, as well. SurfaceFleet
handles transitions in place—bridging the resulting gaps—
across all four of these dimensions.
† The first two authors contributed equally to this work

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
UIST '20, October 20–23, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7514-6/20/10…$15.00
https://doi.org/10.1145/3379337.3415874

Figure 1. SurfaceFleet unbinds UI elements from not only the
device but also the current application, user, and time. In the
visible UI, Applets unbind controls from applications. Portfolios
unbind tools, inputs, behaviors, and content from the current
device and user. Promises unbind actions from time.

mailto:f.brudy@cs.ucl.ac.uk
mailto:david.ledo@ucalgary.ca

While these gaps have long been established in Ubicomp,
CSCW, and “Society of Devices” research [4, 11, 22, 26, 42,
59, 78], SurfaceFleet provides a unified interface around a
small number of concepts to bridge device, application, user,
and time—all at once. This integrative contribution—part
design probe, part reference implementation, and part
systems proof-of-concept—suggests that our approach can
address a variety of cross-device usage scenarios that entail
crossing one or more of these four bridges.

While some of our scenarios involve collaboration, the type
of computer-supported cooperative work afforded by current
on-line document sharing systems is not our core
contribution. Indeed, instead of sharing entire documents,
our techniques instead focus on supporting distributed user
operations—tools, inputs, content, and behaviors—that can
be combined with or act upon documents.

For example, interactive tools and inputs include the system
clipboard, a color picker, a camera stream, or a mouse
telepointer. Individual pieces of content include images,
passages of text, or color palettes that can be dragged and
dropped into documents. But even groupings of multiple
objects—for example, placeholders for three images—can
be collected in a Container, which visually resembles a
splayed-out sheaf of papers. Any object—content, tools, or
Containers—can be shared across one’s own devices (or with
a collaborator) via a Portfolio (Figure 7). A Portfolio is a
distributed-interface object akin to an art portfolio case—a
place where an one carries work of mixed media, of various
sizes and types, and their tools of the trade. Content,
Containers, and Portfolios are all reified in the UI through
Applets—draggable, semi-transparent UI elements that
remain always-on-top of the window manager, available as
the user switches between different programs or web pages.

Finally, Interaction Promises offer novel behavior by acting
as a reference to future content, such as a placeholder for an
on-site photo that has not yet been taken. These are
encapsulated as cross-device SurfaceFleet objects that users
can likewise collect, share, and drag & drop into documents.

Our main contribution is the concepts behind the
SurfaceFleet system itself, which leverages a robust and
performant distributed system foundation [24], raising novel
implications for migration of user experiences across
multiple dimensions of “place.” To illustrate the potential of
this approach for a variety of usage scenarios, we explore
novel interaction mechanisms including Applets, Portfolios,
and Interaction Promises. We also present a preliminary
toolkit for authoring SurfaceFleet applications in C# without
deep prior expertise in distributed systems. Overall, our work
offers a unifying conceptual contribution through its framing
of mobility as transitions in place in terms of device,
application, user, and time—and the resulting exploration of
techniques that simultaneously bridge all four of these gaps.
FOUR CORNERSTONES OF UNBOUNDEDNESS
Here, we further unpack these four dimensions of device,
application, user, and time, showing how they can act in

tandem via direct manipulation, such as in the concrete
Usage Scenario that follows.

#1. Device Unbound. Applets run on individual devices, but
the underlying system preserves all updates to program state
in a durable log via the Azure cloud [24]. Thus, migration of
user activity from one device to another is a special case of
fail-over to a new machine. But the same durable logging
mechanism affords highly performant synchronization, also
enabling parallel (multiple device) experiences. This allows
the unbinding of interface elements from a particular device.

#2. Application Unbound. Rather than replacing users’
existing applications, our strategy is to interoperate with (and
span across) them, via Applets layered above other content.
But unlike techniques such as ToolGlass [12], Tracking
Menus [21], or translucent patches [49], Applets are
independent executables that are not bound to a particular
program, window, or the walled garden of a web browser;
rather, they float above the operating system shell, and its
applications—and conceptually, even the device itself.

#3. User Unbound. Since Applets roam across devices, they
afford connections between people—multiple users on
multiple devices—as well. Yet in current practice, many of
the tools one uses for collaboration differ sharply from the
everyday tools used for individual work. Hence, we adopt the
design stance that individual tools are collaborative tools,
and vice versa. One can set aside an ephemeral piece of
information for later use in one’s individual work—via
exactly the same interaction mechanisms used to pass a
screen grab to a co-located (or even remote) collaborator.

#4. Time Unbound. Another consequence of our approach is
support of both synchronous and asynchronous interactions.
Once there is a deterministically replayable log of distributed
state, application logic does not necessarily have to “fail-
over” immediately. Likewise, finer-grained interactions can
also be left latent, to migrate or synchronize at a later time.

Acting in Tandem. These four cornerstones of
unboundedness can act in tandem, allowing users to
selectively share objects, or defer actions, until opportunity
arises on the device with the desired resources, at the right
time and the right place. For example, a user could work with
a collaborator to gather the desired information, from a
suitable application, on another device, and at a later time. In
addition—and similar to Koorsgard’s description of a place-
centric approach to computing [48]—this affords fluid
transitions between different configurations in everyday
situations and evolving changes over time.

Via Direct Manipulation. Graphical user interfaces rely
heavily on direct manipulation of visually-represented
objects on a single device. Yet for distributed work, in
current practice the necessary documents or pieces of
information are often invisible and out of sight—lost and
fragmented [13, 66] across a Borgesian labyrinth of synced
folders, downloads, devices, and web services. This sharply
diverges from natural human ways of organizing—such as

collecting reference images in a sheaf
nearby, or sharing a clipping from an
article just by passing it to a colleague.
This suggests that it might be fruitful to
tackle some aspects of distributed
interaction by reifying them as objects
and instruments [7, 8] for “drag &
drop” direct manipulation.

Our work also resonates with
Beaudouin-Lafon’s compelling (but
brief) Unified Principles of Interaction
that support ubiquitous sharing,
distributed interaction, and pieces of
content, while elevating interactions
(i.e. tools) to first-class objects [9]. We
argue that by unbinding interaction
from the aforementioned cornerstones,
we provide a flexible environment
where users can work across devices,
migrating tools and content between
applications and tasks—by working
collaboratively, and at a time that suits
them best. Ultimately, users choose a
configuration that fits their workflow,
allowing them to fulfill their tasks.
Usage Scenario
To give a more concrete impression of
how SurfaceFleet looks and feels, the
following usage scenario (Figure 2)
illustrates how Applets combine (see
also our video figure).

Alice is an architect at a small firm,
currently working on a critical report
ensuring that her building design is
being constructed properly at a far-flung construction site:

S1. Create a Portfolio. Alice launches the SurfaceFleet
taskbar from the system tray, where she can create Media
Primitives, Containers, Portfolios, and Tools. She creates a
Portfolio—an Applet that passes content across devices. The
Portfolio floats on top of her window manager, always
accessible via drag & drop from other programs or Applets.

S2. Collect Images On the Go. On the train, using her tablet,
Alice creates a Container from the SurfaceFleet taskbar. She
looks through her folder of site photos and drags & drops the
images she wants into the Container. Alice drags this
Container into a Portfolio that she created. Later, in her
office, she opens it from her desktop, giving access to the
shared Container with the images collected on her tablet.

S3. Create & Fulfill a Promise. At her desktop, Alice
realizes she doesn’t have a photo of the new building’s
entrance. Alice creates an empty placeholder and inserts it
into her document. Through a Portfolio, she shares it with
John, a co-worker on-site at construction. That afternoon,
John takes a photo of the new entrance to fill the placeholder.

When Alice retrieves the image from the Portfolio, her
document updates, fulfilling the Promise.

S4. Share Contents on a Large Display. In a meeting room
with a large display, Alice discusses the report with two
colleagues. From a social distance, they can each pass their
mouse pointer to the large display through a Portfolio. Alice
then stands to present, while her colleagues tele-point to
indicate parts of the document they have questions about.
Alice uses the Extract tool to take a snapshot of the current
page. Using a pen, she then annotates the document as her
colleagues indicate areas of concern. She captures the mark-
up by Extracting the page once again, and for comparison
she drags the two snapshots back into a shared Portfolio.
RELATED WORK
SurfaceFleet builds on systems and techniques for transitions
across devices, applications, and individual vs. collaborative
work—or for deferring actions in time. We then contrast our
approach with existing on-line sharing services (Figure 3).
Devices Unbound: Cross-Device Interaction
In the cross-device design space of Brudy et al. [15],
SurfaceFleet supports one or many people and devices;

Figure 2. An example SurfaceFleet usage scenario that spans devices, applications, users,
and time—via Portfolios (S0), Containers (S1), Interaction Promises (S2), and Tools (S3).

synchronous or asynchronous interactions; fixed and ad-hoc
dynamics; personal and social scales; and remote or co-
located use. Many previous cross-device techniques depend
on spatial engagement [54], such as the spatially updated
drag-and-drop regions offered by Relate Gateways [23]. But
this requires a “smart room” with full spatial sensing,
excluding remote users—or indeed anyone who steps outside
the room. Our work forgoes spatial sensing to more flexibly
support co-located and remote interactions [5, 27, 46].

Conductor [32] supports ad-hoc chaining of devices and
cross-device relationship management, in single-user / multi-
device scenarios with small tablets. Panelrama [80] partitions
the ‘panels’ of a web UI (such as the elements of a YouTube
video player) across devices. Treating multiple devices as a
sort of multi-monitor [29] offers another approach [2].
SurfaceFleet’s Applets adopt this notion of distributing
small, self-contained pieces of functionality, but does so in
ways that also afford multi-user/multi-device collaboration.
Cloud-Capable UI Elements as First-Class Objects
While SurfaceFleet’s Applets provide useful functionality
even when running on a single device, they inherently
support migration of program state across devices, if and
when desired. Existing cross-device HCI systems and
toolkits tend to emphasize spatial proximity [37, 53, 69],
gesture input / recognition [19, 38], or testing [57, 58] for the
toolkit's level of abstraction. In SurfaceFleet we focus on
providing shared state abstractions for distributed systems.

Other toolkits explore how to persist information across
clients, often making use of a shared dictionary (e.g.
GroupKit [64]) or a shared Document Object Model (DOM)
on the web, as realized by Webstrates [46]. Under these
representations, UI elements can update their information
when a shared model changes. We apply a similar technical
notion, but bring it to the level of user interface elements in
native applications, with state shared at the C# language-
binding level through a principled and scalable database
architecture [24]. Hence, in SurfaceFleet, cloud-capable UI
elements and behaviors are first-class objects.
Apps Unbound: Across the OS and Existing Programs
HCI systems research often leverages and repurposes
existing infrastructures. This empowers end-users to
combine tools, customize, and achieve new effects [25, 50,
61]. Similar considerations arise from field studies of
knowledge work, such as the observation that document
management tools should be “integrated in the current
working environment of the user” [14]. SurfaceFleet uses
Applets that float above the window manager, allowing them
to co-exist with the everyday applications and OS features
that knowledge workers already use for productivity. By
contrast, a web solution is bound to a single application—the
browser—and hence largely walled off from rich OS features
and other running programs.

Xerox’s classic Rooms metaphor [35] supports multi-tasking
across sets of applications, including carrying certain
windows across Rooms as Baggage. More recently, activity-

centric systems explore multi-tasking support for activity
roaming, suspension and resumption, and activity sharing [6,
76]. SurfaceFleet’s Applets share some similar motivation
but focus on mechanisms to extend simple actions across
devices, while unbinding them from users and time, as well.
Users Unbound: from Individual to Collaborative
Mobility is a key attribute of collaboration [51]—both in
terms of space, and the social notions of place that people
make of it [34]. People shift between group and individual
activities, needs for information-sharing change, and small
groups come and go [72]. Yet the technological tools for
collaboration differ from those used for individual work,
making transitions from Human-Computer to Human-
Human interaction costly [18] —in part because the tools are
less familiar. Single display groupware [73] offers an
example of reducing such costs: a session that starts on a
single user’s display readily transitions to multi-user activity.

In collaborative systems, the dimension of user is of course
implicit, since they address multi-user and not individual
work. But remote collaboration often requires asynchrony,
and hence ways to unbind time. For example, the MATE
collaborative writing system [33] allows one user’s mark-up
gestures to be acted upon by a colleague at a later time.
Likewise, Portholes [20] provide background awareness of
when remote users are present, affording notions such as
meeting “when everyone is available” [18].

More generally, SurfaceFleet expands the notion of place in
the classic time/space matrix of collaboration [4, 42]. For
example, mixed-presence groupware [74] addresses the
same time / same place and same time / different place
quadrants of this matrix. But SurfaceFleet calls out the
dimension of user—individual or collaborative—while also
raising device, application, and time as cornerstones of
unboundedness. This shows how interactions and system
abstractions that unbind activity from a particular device can
also serve to unbind other dimensions of place in mobility.
Time Unbound: Deferred Action, Multiple Fulfillment
Beyond the same time / different time distinction of the
time/space matrix [42], other work explores going back in
time [62, 79]. But the ability to defer certain actions to future
time also could be valuable because knowledge workers
often must cope with uncertainty, or missing information.

For example, people often can’t sensibly file new materials
because their future role or utility is still unknown [44]. Our
Container and Portfolio Applets in particular extend designs
for gathering pieces of encountered information [56] during
active reading, via multi-object visual clipboards [36, 63,
75], to span devices and multiple users. But in particular,
SurfaceFleet includes ways to defer actions (user decisions)
to a later point in time—or even more than one point in time,
such as through multiple fulfillment of Interaction Promises.
Existing Online Sharing Apps and Web Services
Current sharing apps (Fig. 3) address aspects of distributed
work, but these solutions are siloed (in a single app or the
browser)—and focus on folder sync, or sharing entire files.

Our contribution is integrative, addressing multiple aspects
with a few UI concepts. For example, Dropbox, OneDrive,
and GoogleDrive are document-centric archives. They focus
on cold storage of entire documents, synchronizing
established folders and files, rather than transient pieces of
content (or tools) in active use. Slack and Teams focus on
messaging, with files or images dragged into threads. But
these are still silos: one must switch to Slack/Teams to share.
So sharing with collaborators requires a different interface
than passing individual work to one’s own devices. By using
Applets that float on top of the window manager,
SurfaceFleet keeps the same sharing affordances always
available, even as the user switches between their familiar
productivity applications, documents, or web pages.

Apple Continuity [3] supports features such as handoff to
another device, using a device as a second screen, or
Continuity Camera to insert a picture taken by another
device. SurfaceFleet contributes technical means to build
these type of experiences, and shows how this can generalize
to operations across four cornerstones of unboundedness.

Finally, our system is not a client with simple views into the
data on each device. Rather, SurfaceFleet hosts “rich clients”
where the shared layer plugs directly into application state at
the C# language binding level. Hence, durable shared state
via Azure, in a principled distributed system architecture, is
an integral part of our functionality.
Summary
Each Applet in the SurfaceFleet system is an independent
executable, with a cloud connection to log shared model
updates in a robust and durable manner. Giving each Applet
a concrete visual representation that floats above the window
manager reifies these concepts [8] for rich instrumental
interaction [7]. Activity starts on a single device, yet

individual tools can serve as collaborative
tools—and vice versa—while also
affording the deferral of actions in time.
Unbinding Device, Application, User,
and Time each have precedents, but
SurfaceFleet is the first distributed
system to put all four of these
cornerstones into action simultaneously,
for both tools and pieces of content, using
just a few cross-device toolkit
abstractions and interactions.
SURFACEFLEET SYSTEM & TOOLKIT
Before discussing SurfaceFleet’s
interaction techniques in more depth, we
first detail the technologies that comprise
our system and toolkit. SurfaceFleet runs
on Windows and is implemented in C#
using the .NET Framework and Windows
Presentation Foundation (WPF). Major
components include a shared model,
robust logging of updates, and OS and
application-interop features (Figure 5).

Device Unbound: Migration as Cross-Device Fail-Over
SurfaceFleet is founded on principled distributed systems
techniques, so resiliency is built into our system—unlike
HCI toolkits and demos that use ad-hoc TCP connections, or
UDP streaming, for example. We use a distributed client-
server architecture, where each client keeps a local copy of
shared state. Changes to the local state synchronize in real-
time, with the state updating (recovering) on a new device as
soon as a connection is established. Clients within a
federation can communicate through the Azure cloud, which
they access via a federation-specific connection string
needed for Shared Key authorization.

We built a custom infrastructure on top of Ambrosia [24].
Ambrosia (available via open source) uses declarative
database techniques to persist data, providing virtual
resiliency by capturing state changes in a deterministically
replayable log. This is done at the C# language level in a
durable, failure-resilient, and performant manner via Azure.

Ambrosia utilizes a component known as CRA (also open-
source) [65] that virtualizes connection management.
Virtualization of inter-device connections combined with
virtual resiliency of state changes makes our system not only
robust to IP address changes, but also facilitates migration of
user interface operations from one device to another. As long
as clients can access the cloud they can (re)synchronize
application state—essentially turning a transition from one
machine to another into a cross-device fail-over.

Developers don’t have to write extra program logic to handle
complex distributed failure cases. For Serializable data types,
SurfaceFleet wraps these robust foundations for shared state
at the C# language level through C#’s Attributes feature,
which enables querying of program entities at runtime
without the need for any compiler modifications or

Figure 3. Surface Fleet unbinds Device, App, User, and Time in a way that unifies all
four of these cornerstones, and that complements existing on-line sharing tools.

additional tools. Developers simply need to annotate
variables as [Synchronizable] (Figure 4). The robust
sharing of state across multiple devices is entirely managed
on behalf of the developer.

Figure 4. Tagging a variable with the [Synchronizable]

Attribute makes it available across devices. Subscribing to
ModelUpdated events triggers callbacks for changes in value.

Developers can subscribe to update events for state changes
on remote variables—including single objects, lists, or
dictionaries—and receive a callback in response (Figure 4).
The SurfaceFleet toolkit supports many basic data types,
images, colors, lists, dictionaries, and so forth,
but developers can extend these mechanisms to
arbitrary objects by annotating their own
classes with a C# DataContract.

Application Unbound: Cross-Application
Functionality
Knowledge work is not siloed within any single
“sharing” or “messaging” app. To achieve
Application Unboundedness, SurfaceFleet’s UI
adopts strategies that meet knowledge workers
where their activity occurs, even as they task-
switch among many applications.

Semi-Transparent, Always-on-top Applets:
Existing on-line sharing apps tend to be siloed
in the web browser, or a single application. But
SurfaceFleet’s semi-transparent Applets float
above the window manager, making them
always visible and always available as drag &
drop targets, no matter the current application,
web page, or file system window.

Multiple Formats in Clipboard. The Windows
Clipboard can hold information in multiple
formats. SurfaceFleet takes advantage of this
by simultaneously placing multiple standard
formats—as well as internal data formats—on
the system clipboard. This allows SurfaceFleet
to share rich objects across internal components
—or standard formats with external
applications—using the same mechanisms.

Drag & Drop Events: Users can drag & drop by mouse, pen,
or direct-touch to pass these rich data formats amongst
Applets and unmodified applications such as Word or Adobe
Illustrator. Dragging a SurfaceFleet image primitive, for
example, adds data in three formats: (i) the path to a copy of
the image in the file system; (ii) a bitmap in multiple formats
to enable rich feedback and compatibility with unmodified
applications; and (iii) an internal format that passes an ID to
native SurfaceFleet components such as Portfolios and
Containers—or for use in behaviors such as Interaction
Promises.

SurfaceFleet Plugins & Component Object Model (COM):
When the user drops a SurfaceFleet object onto an
unmodified external application, we check whether we can
access its COM APIs. This requires building a SurfaceFleet
plugin to handle the COM interfaces for each external
application; we currently implement plugins for Word,
Illustrator, Photoshop, and PowerPoint integration. But the
SurfaceFleet toolkit includes generalizable abstract classes
that enable developers to add support for new applications in
a straightforward manner. If SurfaceFleet supports the
external application, it performs an action appropriate for the
given data type, such as inserting a photo, filling the selected
shape with a color, or creating an Interaction Promise.
Alternatively, developers can modify an external application

[Synchronizable]

public Color CurrentColor

{

 get

 {

 return (Color)this.Connection.SharedModel["CurrentColor"];

 }

 set

 {

 this.Connection.SharedModel["CurrentColor"] = value;

 }

}

//subscribe to update events of remote variable

Connection.SharedModel.ModelUpdated += OnModelUpdated;

private void OnModelUpdated(object sender, ModelChangedEventArgs e)
{

 if (e.PropertyName == "CurrentColor" && this.isDisplayOnly)

 {

this.Container.Background =
 new SolidColorBrush(this.CurrentColor);

 }

}

Figure 5. System, toolkit, and underlying technical components of SurfaceFleet.

to access our custom clipboard data format directly.
Meanwhile, for legacy applications we default to clipboard
formats such as file paths, bitmap images, or text strings.
Time Unbound: Interaction-Driven Promises
Unbinding actions from time is fundamental to our system’s
technical underpinnings. For example, when a device joins a
federation, it deterministically replays shared model updates
from the session. Hence, SurfaceFleet can migrate activity to
another device immediately, or at a later time, or even revisit
past states so long as they remain available in the log. But at
present, we expose Time Unboundedness in the user
interface through Interaction Promises, which allow users to
insert placeholders for content that is not yet available.

To realize Interaction Promises with external applications,
we use COM APIs to insert & fulfill Promises. For example,
when creating a Promise in Word, we use COM APIs to
insert an invisible bookmark (with a unique ID) spanning a
range selection including the placeholder image. At a future
time, we can scan the document for the ID and replace the
content, again using COM APIs. Here, we simply use the
caret position within the document’s text-flow to insert the
invisible bookmark, plus a placeholder image, which we can
then replace later. Alternatively, developers can implement
their own plugins to check for Promise fulfillments—even
when our application is not running, or the document has
been closed. For example, we created a custom plugin for
Word, which checks opened files for an inserted Promise,
with replacement of the content if needed. This would further
allow insertion of longer blocks of rich content that can be
manipulated within the document—as well as externally.

SurfaceFleet Tools offer another example of app-native
support for time-unbound Interaction Promises. For
example, the color picker can accept a selection (shape)
dragged from Adobe Illustrator. The system keeps a
reference to this shape, and updates the selection’s fill color
whenever the user samples a new color with the color picker.
User Unbound: Social Protocol and Organizational Trust
Conceptually, SurfaceFleet’s interactions are unbound from
any particular user. For example, the Promise replacement
noted above also works in a collaborative scenario, where
one user can insert an image placeholder, then share with a
collaborator via Portfolio. The collaborator can then fulfill it
(e.g. by taking a photo with their device’s camera), and share
back through the Portfolio. We rely on social protocol for
users to learn of shared Portfolios, or to avoid conflicts such
as sharing one physical keyboard to two different devices.

But as stated previously, our core contributions do not
revolve around collaboration, and as such we presently do
not implement the rich heritage of known people-centric
interaction and feedback techniques available in the CSCW
literature. For example, our system currently does not show
which users are connected, or provide feedback of who has
collaborative access. Rather, our goal here is to show that our
technical architecture and the interface mechanisms we
explore have implications for collaborative scenarios as well.

At a technical level, we require SurfaceFleet clients to run on
an organizationally approved version of the operating system
image. This ensures that untrusted, unknown, or possibly
malicious devices outside of an organization cannot join
SurfaceFleet federations. To verify and enforce this, we
implemented Windows device attestation via the CPU’s
built-in Trusted Platform Module (TPM) hardware to
cryptographically ensure device compliance. Devices that
pass this attestation receive an authorization key, enabling
access to a federation’s shared state on the Azure cloud.
INTERACTION TECHNIQUES IN SURFACEFLEET
At a high level, the various concepts realized in the user
interface of SurfaceFleet are intended as technology probes
[40]. We believe our toolkit affords many new opportunities
for cross-device interaction, which we explored by building
and reflecting-in-action [67] upon a set of interdependent
techniques. Each of these techniques (or “probes”) represent
meaningfully distinct examples that go beyond single
instances by collectively exploring a class of techniques—
and that illustrate the compound, integrated [17] workflow
of knowledge work that spans multiple surfaces [66, 68].

At present, we make no strong claims as to whether
SurfaceFleet and the particular probes realized in its Applets
make for “better” distributed work or not. And the level of
development is not yet such that we can deploy our
techniques longitudinally for real work. Rather, these
techniques are intended to probe and demonstrate some of
the interesting technical and interaction possibilities afforded
when one approaches Society-of-Devices experiences from
a principled distributed systems foundation.
Applets and the SurfaceFleet Taskbar
Applets let SurfaceFleet offer user interface objects across
the window manager and other applications. Applets are
independent executables, visible as compact regions that
float above the window manager. The user can reposition
them as desired, or dismiss when no longer needed.

Applets are semi-transparent by default. This allows partial
visibility of underlying content or program windows. But
when the user touches an Applet (or hovers over it with the
mouse or a pen-tip), it fully materializes, becoming opaque;
moving away then fades back to a semi-transparent state.
Hence Applets are always visible, always on top, and always
available for drag & drop from any program or web page.

Through these Applets, SurfaceFleet UI strives to make
cross-device interactions visible and local. The legacy of
Xerox Star conventions such as folders, icons, and generic
verbs [43] shows the power of directly manipulating visual
metaphors [28, 41, 70]. The visibility and locality [77] of
techniques such as Local Tools [10], KidPad [39] and
HabilisDraw [16, 71] show how making a tool’s meaning,
state, and parameters apparent provides awareness and
affordances [30, 60] for interaction. Related techniques such
as Tracking Menus [21], Translucent Patches [49], and
ToolGlass [12] all use floating tools to interact with content
in rich ways. Such reification [8] allows domain objects to

combine with interaction instruments [7]—an approach also
well-suited to multi-surface environments [47].

SurfaceFleet's Applets adopt these strategies to interoperate
with the OS, window manger, application windows, and one
another through instrumental interaction. The user can
launch Applets from the SurfaceFleet taskbar (Figure 6). But
further interactions with floating Applets and Tools often
yield Applets directly, without having to revisit this taskbar.

Five Mechanisms for Cross-Device Interaction
SurfaceFleet consists of five main distributed-interface
mechanisms that users can employ in combination to unbind
content and tools from device, application, user, and time:
1. Portfolios: Akin to an art portfolio case, this Applet

functions both as a cross-device portal, and a creator’s
travel folio—a place to stash mixed-media content
(Primitives, Containers) as well as interactive Tools.

2. Interaction Promises are placeholders for content,
allowing deferral of select actions or decisions. For
example, users can drag empty Media Primitives, where
the contents of the images are not yet available, to create
and share Promises for future fulfillment.

3. Tools: SurfaceFleet encapsulates a number of user
interface operations, inputs, and interactive behaviors in
special Applets known as Tools. Users can drag Tools
onto content (or use them as drop targets) to achieve
various effects via instrumental interaction [7, 8].

4. Media Primitives are pieces of content, such as images,
that are elevated to floating Applets to make them directly
actionable for cross-device use in SurfaceFleet.

5. Containers: Visually represented as a splayed-out sheaf,
this Applet offers an always-available, multi-object visual
clipboard that users can dock to any edge of the screen for
convenient collection and curation of content.

The following sections discuss each of these in more depth,
starting with perhaps the most interesting ones, Portfolios
and Interaction Promises.
Portfolios: Unbinding from Devices and People
The Portfolio Applet acts like a mobile travel case, holding
mixed-media objects and tools while transporting them from
one “place” to another. Part portal, part stash, and part
teleporter, Portfolios enable convenient transfer of
SurfaceFleet objects—Media Primitives, Containers, Tools,
and Promises—across devices through a common drag and
drop operation. Portfolios are unbound from devices—once
a Portfolio is instantiated, other devices in the same
federation can access it. And they’re unbound from users as
well—allowing people to build habits for moving personal
objects across devices for individual work, that then also
apply to moving shared objects across users for collaborative
work. Hence SurfaceFleet offers consistent interactions such
that individual tools are collaborative tools, and vice versa.

When an Applet (such as an Image Primitive) is dragged over
a Portfolio (Figure 7), the Portfolio wiggles to indicate that
it can accept the content. Releasing the Applet places it into
the Portfolio, which shows the Applet sticking out. This
feedback of available items is echoed across all devices that
have access to that particular shared Portfolio. People can
place or retrieve contents from a Portfolio in a manner
similar to how people hand off physical documents or even
tools. When a person takes an item out of a Portfolio, by
double-tapping, it is elevated to an independent Applet, now
floating on their screen. Users can customize the label and
color scheme of each Portfolio to make them distinct.

Interaction Promises: Unbinding from Time
Interaction Promises are one of the more interesting new
concepts probed by SurfaceFleet. They afford asynchronous
workflows where people can delegate pieces of content to
other devices, or collaborators, for fulfillment in the future.
That is, in combination with Applets, SurfaceFleet uses these
as proxies for the as-yet unavailable contents of a Media
Primitive. They can also be fulfilled one or more times, such
as replacing an initial image with a better option that a
collaborator shares back later. Interaction Promises even
support multiple fulfillment, i.e., they can return a Container
with a plurality of objects as options, from which the user
who initiated the promise can decide which one to select.

These types of dilemmas are common in knowledge work,
where pieces of information may be ambiguous, undecided,

Figure 6. The SurfaceFleet taskbar can create Applets for (a)
Media Primitives, (b) Containers, and (c) Tools, and (d)
Portfolios. The taskbar icon (e) appears near the Start menu.

Figure 7. Portfolios share content and tools. An empty Portfolio
appears closed (left). Dragging content or tools over a Portfolio
causes it to wiggle, signaling that the Portfolio can accept the
object (middle). Portfolios partially reveal their contents to
provide awareness (right). A double-tap retrieves the contents.

too distracting to deal with immediately, or unavailable as
work begins [44, 68]. In other cases, users may need to defer
decisions to a later time, such as when they are on another
device with the right resources (e.g. a camera) or content
(photo collection)—or when a collaborator is ready to help.

For example, to insert a provisional image into a Word
document (Figure 8), SurfaceFleet lets users drag an empty
placeholder Image Primitive Applet into their document. By
also sharing this Applet with a collaborator, via a Portfolio,
the collaborator can later fulfill this placeholder with image
content. SurfaceFleet links all placeholders within
documents to their Applet source, allowing the image to be
updated when the corresponding distributed-interface object
changes, whether locally, on another device, or by another
user. Likewise, upon fulfillment, a single Promise can
propagate to multiple placeholders in a document, as
currently implemented in Microsoft Word through invisible
bookmarks that contain the Applet’s internal object ID (for
the details of our approach see the earlier technical
description of “Interaction-Driven Promises”).
Tools—User Operations Across Devices & Applications
Tools are Applets that reify and encapsulate functionality for
generic verbs [43], input streams, or OS-level commands that
apply across multiple applications. As appropriate for
instrumental interaction [7], the effect of a Tool depends on
what it is applied to—hence, by drag and drop to different
programs, content types, or Applets, the user can achieve
various effects with a small set of Tools. For example,
clicking a full Color Picker Tool over Illustrator “squeezes
out” the color, onto Illustrator’s selected objects.

Tools always produce a visual manifestation, either by
generating a new Applet (Media Primitive) as a result, or by
having a visual representation of the command applied
locally. Users can then drag these representations to share the
Tools (i.e. their results or behaviors) across devices via
Portfolios. In this manner, not just content but also tools can
be unbound from devices and passed to collaborators.

Examples of Tools as Generic Commands
Tools can have special functions that encapsulate cross-
application as well as operating system behaviors. All Tools
can be shared across devices via Portfolios (e.g. Figure 7).
Color Picker Tool. Resembling an eyedropper, this tool
retrieves the color of a screen pixel from any device. When
full, the color can be squeezed out onto other Applets or
running programs. For example, a designer can use the Color
Picker to drop multiple colors into a Container, which creates
color chips, e.g. to curate the color palette for a brand design.
Camera Tool. A device’s camera can connect to a Media
Primitive or Container. When the user snaps a picture, the
photo replaces the Primitive, or adds to the Container.
Tele-point & Tele-type. In co-located, shared screen
scenarios, users can pass their mouse cursor to another
device. Each user’s telepointer appears with a distinct color.
For clicks, SurfaceFleet injects multi-touch events, allowing
each user to drag objects and interact. Likewise, users can
pass the Tele-type Tool to a device lacking a keyboard.
Screen Grab. The user can lasso a portion of the screen using
a pen, touch, or mouse, resulting in a nonrectangular Image
Primitive. This makes it easy to grab a piece of encountered
content [56] on one device and share it back to another.
Extract Tool. The Extract tool is similar to Screen Grab, but
grabs rectangular content within an application window
(such as to collect the currently visible page of a document
for mark-up), and elevates it to an Applet for collection and
sharing via Containers and Portfolios.
Clipboard. Users can link this Tool to an Applet, such as a
Container, to collect objects copied to the system clipboard
(further detailed below). The Clipboard Tool’s icon remains
visible, providing feedback of the active link until dismissed.
Media Primitives—Content Unbound from Applications
The Media Primitive is a base Applet that reifies a single
piece of content. Primitives remain local, unless shared to
another device or user. We currently support images, rich
text, and colors; video and audio are planned additions. In
particular, Media Primitives allow drag & drop with:
− Unmodified Programs, for insertion into Word, Illustrator,

PowerPoint, Photoshop, File Explorer, the Desktop, etc.;
− Portfolios and Containers, for collection with other objects

and sharing across devices and users; and
− Any Other Applet, to serve as the operand of the function

appropriate to the drop-target.
− Tools / Returned as Results. Media Primitives also emerge

as results from other Applets, such as when applying a
Tool, or taking shared content out of a Portfolio.

Like other Applets, Media Primitives float on top of the
window manager, where users can reposition, partially
overlap, or otherwise arrange them freeform. Thus pieces of
content in active use remain visible and readily at hand, in a
“spatial holding pattern for current inputs and ideas”[44]—
much like scraps of paper on a physical desk. Our intent is to
allow the “intelligent use of space” [45] typical in knowledge

Figure 8. Interaction Promises: 1) the user drags an empty
placeholder into a document. The user can then 2) populate it
with an initial image, or 3) receive updates when the linked
Applet is fulfilled from other devices, or by other users.

work, such as to structure task steps, remind of important
information, and afford juxtaposition of ideas [31, 68].

Containers: Collections of Media Primitives
A Container (Figure 9) is a floating Applet that aggregates
and curates a set of media primitives, which appear by
default as a fanned-out sheaf of items. Containers let users
arrange, reposition, or pin up a set of objects (such as images)
as a unit, much like one would place a stack of papers in a
task-appropriate position on a physical desk [52]. Containers
support vertically stacked, horizontally stacked, grid, and
freeform arrangements of content (Figure 6b). They can even
have a set number of items, and of a certain type—such as a
Container with placeholders for three images that a user
might pass to a collaborator, to populate with on-site photos
of construction from three different camera angles.

Distributing the System Clipboard via Containers. In
addition to inserting media via direct drag-and-drop from
Applets and other programs, users can drag the Clipboard
Tool onto a Container to associate them. Then, whenever the
user copies media to the system clipboard, it also appears in
the Container, with a salient “pop and bounce” animation.
For individual use, this preserves a history of copied items,
which the user can then drag out and re-use at any time. But
by passing such a Container to select devices or collaborators
(via the Portfolio, as discussed below), the user creates a
shared distributed clipboard. Hence this combination of
Applets and Tools shows how SurfaceFleet can unbind an
abstraction like the system clipboard from the current device.
DISCUSSION
Here we reflect on the design probes as currently realized in
SurfaceFleet, based on our own experiences with them, as
well as some preliminary pilot user feedback we’ve received.

Power in Combination. SurfaceFleet frames mobility in
knowledge work as transitions from one place to another,
where place is generalized across multiple dimensions of
unboundedness. Hence “sharing” is not just something for
files & folders, but reconceived and de-coupled into Applets
and Tools. Simple behaviors then support flexible “partial
sharing” of pieces of documents, and other intermediate
work-objects. The resulting expressive match [61] of Applets

and Tools with instrumental interactions [7, 8] lends the
system power in combination. And with the unbinding of
time afforded by Interaction Promises, a unified interface
with a small number of consistent concepts can support
flexible workflows for individual deferred actions as well as
collaborative delegation of tasks.

Appropriate Scale in Time and Number. The interface
choices made in SurfaceFleet’s current design probes suit
some envisioned uses, but not others. It is intended for
transient work-objects in active use, not the long tail of items
in cold storage. A single active project, not a long-term
archive of many. Small-group settings, not large meetings.
Semi-private sharing among trusted peers, not open and
(potentially untrusted) public participation. For example, the
freeform, informal, and arguably more human way of
organizing content afforded by a “messy desk” [1, 14, 44,
45] might not scale to hundreds of Applets left lying around
on top of the window manager. However, these choices are
not fundamental to our four cornerstones of unboundedness,
our robust distributed-system foundation, or our toolkit,
which could all be used to probe many other possibilities
along this spectrum of choices in the future.

Feedback and Awareness. Perhaps the main weakness of
our current visual interaction design is that certain aspects of
state, such as which other devices or users (if any) a Portfolio
is currently shared with, lack feedback. This might be as
simple as showing pictures on-hover of who a Portfolio is
shared with. It could also involve more animations such as
the Portfolio’s existing “wiggle” to signal it can accept drag-
and-drop (Figure 7). And more generally, awareness of
nearby devices or persons is lacking in SurfaceFleet. Such
feedback could allay potential concerns of sharing something
private by dragging it to the wrong Applet, for example.

Toolkit Availability and OS. The technical foundation of our
system is complex and involves a number of layers that
would need to be better packaged to make them usable and
maintainable going forward. Nonetheless our medium-term
intention is to release SurfaceFleet for open source. Further,
developers curious about these directions can directly build
on top of Ambrosia [24] and CRA [65]. For example, we are
currently investigating the feasibility of building distributed
interactions for JavaScript and Android via these layers.
CONCLUSION AND FUTURE WORK
Our work articulates a new way of thinking about mobility
as transitions from one place to another. In particular, we
generalize the notion of place to four cornerstones of
unboundedness: device, application, user, and time. At
present, SurfaceFleet just scratches the surface of these
multi-dimensional gaps in cross-device interaction, and
much work remains to be done to support them more fully.
But collectively our existing toolkit and design probes of
interaction techniques already show much potential.

We are also keen to develop more aspects of the system to a
level where they could be deployed for real work—and for
longitudinal studies. These could surface new issues and

Figure 9. A Container synchronized across devices via a
Portfolio. Any items added appear on the other device.

challenges in our multi-device, multi-user world (even if
largely in the form of remote collaboration in this pandemic).

Many other issues remain to be explored by future work. For
example, our present system does not attempt to sense or
discover nearby devices and services for implicit or semi-
automatic formation of device federations [26, 55]. We are
especially interested to pursue techniques that exploit
sensing on devices and semi-fixed features such as tables and
displays, with flexible treatment of interpersonal space [27].
To explore these directions, we intend to add support for
distributed sensing techniques to the SurfaceFleet toolkit.

More generally, present computing trends suggest that cross-
device and distributed systems will have major impact on
HCI going forward. With Moore’s Law at an end, yet
networking and storage exhibiting exponential gains, the
future appears to favor systems that emphasize seamless
mobility of data, rather than using any particular CPU. At the
same time, the ubiquity of connected and inter-dependent
devices, of many different form factors, hints at a Society of
Technologies that establishes meaningful relationships
amongst the members of this society. This favors the mobility
of user activity, rather than using any particular device, to
achieve a future where HCI can meet full human potential.
ACKNOWLEDGMENTS
We thank Nicolai Marquardt for feedback and help with
some figures. We thank the reviewers for their feedback.
REFERENCES
[1] Anand Agarawala and Ravin Balakrishnan. Keepin' it

real: pushing the desktop metaphor with physics, piles
and the pen. in Proceedings of the SIGCHI conference
on Human Factors in computing systems. 2006.
Montréal, Québec, Canada: ACM.
http://doi.acm.org/10.1145/1124772.1124965.

[2] Naser AlDuaij, Alexander Van't Hof and Jason Nieh.
Heterogeneous Multi-Mobile Computing. in
Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and
Services. 2019. Seoul, Republic of Korea: ACM.
10.1145/3307334.3326096.

[3] Apple Inc. Apple MacOS Continuity: All your devices.
One seamless experience. 2020 [cited 2020 April 30];
Available from:
https://www.apple.com/macos/continuity/.

[4] Ron Baecker, Jonathan Grudin, William Buxton and
Saul Greenberg, Readings in Human-Computer
Interaction: Towads the Year 2000. 1995, San Mateo,
CA: Morgan-Kaufmann.

[5] Jakob Bardram, Sofiane Gueddana, Steven Houben and
Søren Nielsen. ReticularSpaces: activity-based
computing support for physically distributed and
collaborative smart spaces. in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. 2012. Austin, Texas, USA: ACM.
10.1145/2207676.2208689.

[6] Jakob E. Bardram, Steven Jeuris, Paolo Tell, Steven
Houben and Stephen Voida, Activity-centric computing
systems. Commun. ACM, 2019. 62(8): p. 72-81.
10.1145/3325901.

[7] Michel Beaudouin-Lafon. Instrumental interaction: an
interaction model for designing post-WIMP user
interfaces. in Proceedings of the SIGCHI conference
on Human Factors in Computing Systems. 2000. The
Hague, The Netherlands: ACM.
10.1145/332040.332473.

[8] Michel Beaudouin-Lafon and Wendy E. Mackay.
Reification, polymorphism and reuse: three principles
for designing visual interfaces. in Proceedings of the
working conference on Advanced visual interfaces.
2000. Palermo, Italy: ACM. 10.1145/345513.345267.

[9] Michel Beaudouin-Lafon. Towards Unified Principles
of Interaction. in Proceedings of the 12th Biannual
Conference on Italian SIGCHI Chapter. 2017. Cagliari,
Italy: Association for Computing Machinery.
10.1145/3125571.3125602.

[10] Benjamin B. Bederson, James D. Hollan, Allison
Druin, Jason Stewart, David Rogers and David Proft.
Local tools: an alternative to tool palettes. in
Proceedings of the 9th annual ACM symposium on
User interface software and technology (UIST '96).
1996. ACM, New York, NY, USA.
http://dx.doi.org/10.1145/237091.237116.

[11] Richard Bentley, Thilo Horstmann, Klaas Sikkel and
Jonathan Trevor. Supporting Collaborative Information
Sharing with the World Wide Web: The BSCW Shared
Workspace System. in Proceedings of the 4th
International WWW Conference. 1995. IEEE Computer
Society Press.

[12] Eric A. Bier, Maureen C. Stone, Ken Pier, William
Buxton and Tony D. DeRose. Toolglass and magic
lenses: the see-through interface. in Proceedings of the
20th annual conference on Computer graphics and
interactive techniques. 1993. Anaheim, CA: ACM.
http://doi.acm.org/10.1145/166117.166126.

[13] Richard Boardman and M. Angela Sasse. "Stuff goes
into the computer and doesn't come out": a cross-tool
study of personal information management. in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '04). 2004. ACM,
New York, NY, USA.
http://dx.doi.org/10.1145/985692.985766.

[14] Olha Bondarenko and Ruud Janssen. Documents at
Hand: Learning from Paper to Improve Digital
Technologies. in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
2005. Portland, Oregon, USA: Association for
Computing Machinery. 10.1145/1054972.1054990.

[15] Frederik Brudy, Christian Holz, Roman Radle, Chi-Jui
Wu, Steven Houben, Clemens Nylandsted Klokmose

http://doi.acm.org/10.1145/1124772.1124965
https://www.apple.com/macos/continuity/
http://dx.doi.org/10.1145/237091.237116
http://doi.acm.org/10.1145/166117.166126
http://dx.doi.org/10.1145/985692.985766

and Nicolai Marquardt. Cross-Device Taxonomy:
Survey, Opportunities and Challenges of Interactions
Spanning Across Multiple Devices. in Proceedings of
the 2019 CHI Conference on Human Factors in
Computing Systems. 2019. Glasgow, Scotland Uk:
ACM. 10.1145/3290605.3300792.

[16] Colin G. Butler and Robert St. Amant. HabilisDraw
DT: a bimanual tool-based direct manipulation
drawing environment. in CHI '04 Extended Abstracts
on Human Factors in Computing Systems. 2004.
Vienna, Austria: ACM. 10.1145/985921.986049.

[17] W. Buxton. Chunking and Phrasing and the Design of
Human-Computer Dialogues. in Proceedings of the
IFIP World Computer Congress. 1986.

[18] W. Buxton. Integrating the Periphery and Context: A
New Taxonomy of Telematics. in Proceedings of
Graphics Interface '95. 1995. Quebec City, Quebec,
Canada.

[19] Pei-Yu Chi and Yang Li. Weave: Scripting Cross-
Device Wearable Interaction. in Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems. 2015. Seoul, Republic of Korea:
Association for Computing Machinery.
10.1145/2702123.2702451.

[20] Paul Dourish and Sara Bly. Portholes: Supporting
awareness in a distributed work group. in ACM CHI
1992 Conference on Human Factors in Computing
Systems. 1992. New York, NY: ACM.

[21] George Fitzmaurice, Azam Khan, Robert Pieké, Bill
Buxton and Gordon Kurtenbach. Tracking menus. in
Proceedings of the 16th annual ACM symposium on
User interface software and technology. 2003.
Vancouver, Canada: ACM.
http://doi.acm.org/10.1145/964696.964704.

[22] George W. Fitzmaurice, Azam Khan, William Buxton,
Gordon Kurtenbach and Ravin Balakrishnan, Sentient
Data Access via a Diverse Society of Devices. ACM
Queue, 2003. 1(8 (Nov)).

[23] Hans Gellersen, Carl Fischer, Dominique Guinard,
Roswitha Gostner, Gerd Kortuem, Christian Kray,
Enrico Rukzio and Sara Streng, Supporting device
discovery and spontaneous interaction with spatial
references. Personal Ubiquitous Comput., 2009. 13(4):
p. 255–264. 10.1007/s00779-008-0206-3.

[24] Jonathan Goldstein, Ahmed Abdelhamid, Mike
Barnett, Sebastian Burckhardt, Badrish Chandramouli,
Darren Gehring, Niel Lebeck, Christopher Meiklejohn,
Umar Farooq Minhas, Ryan Newton, Rahee Ghosh
Peshawaria, Tal Zaccai and Irene Zhang,
A.M.B.R.O.S.I.A: providing performant virtual
resiliency for distributed applications. Proc. VLDB
Endow., 2020. 13(5): p. 588–601.
10.14778/3377369.3377370.

[25] Saul Greenberg and Michael Boyle. Customizable
physical interfaces for interacting with conventional
applications. in Proceedings of the 15th annual ACM
symposium on User interface software and technology.
2002. Paris, France: ACM. 10.1145/571985.571991.

[26] Saul Greenberg, Nicolai Marquardt, Till Ballendat,
Rob Diaz-Marino and Miaosen Wang, Proxemic
interactions: the new ubicomp? interactions, 2011.
18(1): p. 42–50. 10.1145/1897239.1897250.

[27] Jens Emil Grønbæk, Mille Skovhus Knudsen, Kenton
O’Hara, Peter Gall Krogh, Jo Vermeulen and Marianne
Graves Petersen. Proxemics Beyond Proximity:
Designing for Flexible Social Interaction Through
Cross-Device Interaction. in Proceedings of the CHI
2020 Conference on Human Factors in Computing
Systems. 2020. ACM. 10.1145/3313831.3376379.

[28] Jonathan Grudin, The case against user interface
consistency. Commun. ACM, 1989. 32(10): p. 1164-
1173. 10.1145/67933.67934.

[29] Jonathan Grudin. Partitioning digital worlds: focal and
peripheral awareness in multiple monitor use. in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2001. Seattle,
Washington, USA: Association for Computing
Machinery. 10.1145/365024.365312.

[30] Carl Gutwin and Saul Greenberg, A Descriptive
Framework of Workspace Awareness for Real-Time
Groupware. Computer Supported Cooperative Work
(CSCW), 2002. 11: p. 411-446.
https://doi.org/10.1023/A:1021271517844.

[31] Joshua Hailpern, Erik Hinterbichler, Caryn Leppert,
Damon Cook and Brian P. Bailey. TEAM STORM:
demonstrating an interaction model for working with
multiple ideas during creative group work. in
Proceedings of the 6th ACM SIGCHI conference on
Creativity & cognition (C&C '07). 2007. Washington,
DC, USA. http://dx.doi.org/10.1145/1254960.1254987

[32] Peter Hamilton and Daniel J. Wigdor. Conductor:
enabling and understanding cross-device interaction.
in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2014. Toronto, Ontario,
Canada: Association for Computing Machinery.
10.1145/2556288.2557170.

[33] Gary Hardock, Gordon Kurtenbach and William
Buxton. A marking based interface for collaborative
writing. in Proceedings of the 6th annual ACM
symposium on User interface software and technology
(UIST '93). 1993.
https://doi.org/10.1145/168642.168669.

[34] Steve Harrison and Paul Dourish. Re-place-ing space:
the roles of place and space in collaborative systems.
in Proceedings of the 1996 ACM conference on
Computer supported cooperative work. 1996. Boston,

http://doi.acm.org/10.1145/964696.964704
https://doi.org/10.1023/A:1021271517844
http://dx.doi.org/10.1145/1254960.1254987
https://doi.org/10.1145/168642.168669

Massachusetts, USA: Association for Computing
Machinery. 10.1145/240080.240193.

[35] D. Austin Henderson and Stuart Card, Rooms: the use
of multiple virtual workspaces to reduce space
contention in a window-based graphical user interface.
ACM Trans. Graph., 1986. 5(3): p. 211–243.
10.1145/24054.24056.

[36] Ken Hinckley, Xiaojun Bi, Michel Pahud and Bill
Buxton. Informal Information Gathering Techniques
for Active Reading. in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '12). 2012. ACM, New York, NY, USA.
http://dx.doi.org/10.1145/2207676.2208327.

[37] Steven Houben, Paolo Tell and Jakob E. Bardram.
ActivitySpace: Managing Device Ecologies in an
Activity-Centric Configuration Space. in Proceedings
of the Ninth ACM International Conference on
Interactive Tabletops and Surfaces. 2014. Dresden,
Germany: ACM. 10.1145/2669485.2669493.

[38] Steven Houben and Nicolai Marquardt. WatchConnect:
A Toolkit for Prototyping Smartwatch-Centric Cross-
Device Applications. in Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems. 2015. Seoul, Republic of Korea:
ACM. 10.1145/2702123.2702215.

[39] Juan Pablo Hourcade, Benjamin B. Bederson, Allison
Druin and Gustav Taxén. KidPad: collaborative
storytelling for children. in CHI '02 Extended Abstracts
on Human Factors in Computing Systems. 2002.
Minneapolis, Minnesota, USA: ACM.
10.1145/506443.506449.

[40] Hilary Hutchinson, Wendy Mackay, Bo Westerlund,
Benjamin B. Bederson, Allison Druin, Catherine
Plaisant, Michel Beaudouin-Lafon, Stéphane Conversy,
Helen Evans, Heiko Hansen, Nicolas Roussel and
Björn Eiderbäck. Technology probes: inspiring design
for and with families. in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '03). 2003. ACM, New York, NY, USA.
http://dx.doi.org/10.1145/642611.642616.

[41] Robert J.K. Jacob, Audrey Girouard, Leanne M.
Hirshfield, Michael S. Horn, Orit Shaer, Erin Treacy
Solovey and Jamie Zigelbaum. Reality-based
interaction: a framework for post-WIMP interfaces. in
Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems.
2008. Florence, Italy: ACM.
http://doi.acm.org/10.1145/1357054.1357089.

[42] Robert Johansen, GroupWare: Computer Support for
Business Teams. Vol. xviii. 1998, New York, NY,
USA: The Free Press. 205.

[43] J. Johnson, T. Roberts, W. Verplank, D. Smith, C. Irby,
M. Beard and K. Mackey, The Xerox Star: A
Retrospective, in Readings in Human-Computer

Interaction: Towards the Year 2000, R. Baecker, J.
Grudin, W. Buxton and S. Greenberg, Editors. 1995,
Morgan Kaufmann: San Francisco. p. 53-70.

[44] Alison Kidd. The marks are on the knowledge worker.
in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1994. Boston,
Massachusetts, USA: Association for Computing
Machinery. 10.1145/191666.191740.

[45] David Kirsh, The intelligent use of space. Artificial
Intelligence, 1995. 73: p. p. 31-68.

[46] Clemens N. Klokmose, James R. Eagan, Siemen
Baader, Wendy Mackay and Michel Beaudouin-Lafon.
Webstrates: Shareable Dynamic Media. in Proceedings
of the 28th Annual ACM Symposium on User Interface
Software & Technology. 2015. Charlotte, NC, USA:
ACM. 10.1145/2807442.2807446.

[47] Clemens Nylandsted Klokmose and Michel
Beaudouin-Lafon. VIGO: instrumental interaction in
multi-surface environments. in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. 2009. Boston, MA, USA: ACM.
10.1145/1518701.1518833.

[48] Henrik Korsgaard, Toward Place-Centric Computing :
Making Place With Technology Together. 2017,
Aarhus University.

[49] Axel Kramer. Translucent patches-dissolving windows.
in Proceedings of the 7th annual ACM symposium on
User interface software and technology (UIST '94).
1994. ACM, New York, NY, USA.
http://dx.doi.org/10.1145/192426.192474.

[50] David Ledo, Steven Houben, Jo Vermeulen, Nicolai
Marquardt, Lora Oehlberg and Saul Greenberg.
Evaluation Strategies for HCI Toolkit Research. in
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 2018. Montreal QC,
Canada: ACM. 10.1145/3173574.3173610.

[51] Paul Luff and Christian Heath. Mobility in
collaboration. in Proceedings of the 1998 ACM
conference on Computer supported cooperative work.
1998. Seattle, Washington, USA: Association for
Computing Machinery. 10.1145/289444.289505.

[52] T. Malone, How Do People Organize Their Desks?
Implications for the Design of Office Information
Systems. ACM Transactions on Office Information
Systems, 1983. 1(1): p. 99-112.

[53] Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring and Saul Greenberg. The proximity toolkit:
prototyping proxemic interactions in ubiquitous
computing ecologies. in Proceedings of the 24th
annual ACM symposium on User interface software
and technology. 2011. Santa Barbara, California, USA:
Association for Computing Machinery.
10.1145/2047196.2047238.

http://dx.doi.org/10.1145/2207676.2208327
http://dx.doi.org/10.1145/642611.642616
http://doi.acm.org/10.1145/1357054.1357089
http://dx.doi.org/10.1145/192426.192474

[54] Nicolai Marquardt, Till Ballendat, Sebastian Boring,
Saul Greenberg and Ken Hinckley. Gradual
engagement: facilitating information exchange
between digital devices as a function of proximity. in
Proceedings of the 2012 ACM international conference
on Interactive tabletops and surfaces. 2012.
Cambridge, Massachusetts, USA: Association for
Computing Machinery. 10.1145/2396636.2396642.

[55] Nicolai Marquardt, Ken Hinckley and Saul Greenberg.
Cross-device interaction via micro-mobility and f-
formations. in Proceedings of the 25th annual ACM
symposium on User interface software and technology.
2012. Cambridge, Massachusetts, USA: Association
for Computing Machinery. 10.1145/2380116.2380121.

[56] Catherine C. Marshall and Sara Bly. Saving and using
encountered information: implications for electronic
periodicals. in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 2005.
Portland, Oregon, USA: Association for Computing
Machinery. 10.1145/1054972.1054989.

[57] Michael Nebeling and Moira Norrie. jQMultiTouch:
lightweight toolkit and development framework for
multi-touch/multi-device web interfaces. in
Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems. 2012.
Copenhagen, Denmark: Association for Computing
Machinery. 10.1145/2305484.2305497.

[58] Michael Nebeling, Elena Teunissen, Maria Husmann
and Moira C. Norrie. XDKinect: development
framework for cross-device interaction using kinect. in
Proceedings of the 2014 ACM SIGCHI symposium on
Engineering interactive computing systems. 2014.
Rome, Italy: Association for Computing Machinery.
10.1145/2607023.2607024.

[59] Thomas Neumayr, Hans-Christian Jetter, Mirjam
Augstein, Judith Friedl and Thomas Luger, Domino: A
Descriptive Framework for Hybrid Collaboration and
Coupling Styles in Partially Distributed Teams. Proc.
ACM Hum.-Comput. Interact., 2018. 2(CSCW): p.
Article 128. 10.1145/3274397.

[60] Don Norman, The design of everyday things: Revised
and expanded edition. 2013: Basic Books.

[61] Dan R. Olsen. Evaluating user interface systems
research. in Proceedings of the 20th annual ACM
symposium on User interface software and technology.
2007. Newport, Rhode Island, USA: Association for
Computing Machinery. 10.1145/1294211.1294256.

[62] Jun Rekimoto. Time-machine computing: a time-
centric approach for the information environment. in
Proceedings of the 12th annual ACM symposium on
User interface software and technology. 1999.
Asheville, North Carolina, USA: Association for
Computing Machinery. 10.1145/320719.322582.

[63] George G. Robertson and Stuart K. Card. Fix and float:
object movement by egocentric navigation. in
Proceedings of the 10th annual ACM symposium on
User interface software and technology (UIST '97).
1997. http://dx.doi.org/10.1145/263407.263535.

[64] Mark Roseman and Saul Greenberg, GroupKit: a
groupware toolkit for building real-time conferencing
applications, in Readings in Human-computer
interaction: Toward the Year 2000, Ronald M.
Baecker, Jonathan Grudin, William A. S. Buxton and
Saul Greenberg, Editors. 1995, Morgan Kaufmann
Publishers Inc. p. 390-397.

[65] Ibrahim Sabek, Badrish Chandramouli and Umar
Farooq Minhas. CRA: Enabling Data-Intensive
Applications in Containerized Environments. in 2019
IEEE 35th International Conference on Data
Engineering (ICDE). 2019.
https://doi.org/10.1109/ICDE.2019.00192.

[66] Stephanie Santosa and Daniel Wigdor. A field study of
multi-device workflows in distributed workspaces. in
Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing.
2013. Zurich, Switzerland: ACM.
10.1145/2493432.2493476.

[67] Donald A. Schön, Designing as reflective conversation
with the materials of a design situation. Research in
Engineering Design, 1992. 3(3): p. 131-147.
http://dx.doi.org/10.1007/BF01580516.

[68] A. J. Sellen and H. R. Harper, The myth of the
paperless office. 2002, Cambridge, MA: MIT Press.

[69] Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang
and Frank Maurer. SoD-Toolkit: A Toolkit for
Interactively Prototyping and Developing Multi-
Sensor, Multi-Device Environments. in Proceedings of
the 2015 International Conference on Interactive
Tabletops & Surfaces. 2015. Madeira, Portugal:
Association for Computing Machinery.
10.1145/2817721.2817750.

[70] Randall B. Smith, Experiences with the Alternate
Reality Kit: An Example of the Tension between
Literalism and Magic. IEEE Comput. Graph. Appl,
1987. 7(9): p. 42-50. 10.1109/mcg.1987.277078.

[71] Robert St. Amant and Thomas E. Horton.
Characterizing tool use in an interactive drawing
environment. in Proceedings of the 2nd international
symposium on Smart graphics. 2002. Hawthorne, New
York, USA: ACM. 10.1145/569005.569018.

[72] M. Stefik, D. G. Bobrow, S. Lanning, D. Tatar and G.
Foster. WYSIWIS revised: early experiences with multi-
user interfaces. in Proceedings of the 1986 ACM
conference on Computer-supported cooperative work.
1986. Austin, Texas: Association for Computing
Machinery. 10.1145/637069.637107.

http://dx.doi.org/10.1145/263407.263535
https://doi.org/10.1109/ICDE.2019.00192
http://dx.doi.org/10.1007/BF01580516

[73] Jason Stewart, Benjamin B. Bederson and Allison
Druin. Single display groupware: a model for co-
present collaboration. in Proceedings of the SIGCHI
conference on Human Factors in Computing Systems.
1999. Pittsburgh, Pennsylvania, USA: Association for
Computing Machinery. 10.1145/302979.303064.

[74] Anthony Tang, Michael Boyle and Saul Greenberg.
Display and presence disparity in Mixed Presence
Groupware. in Proceedings of the fifth conference on
Australasian user interface - Volume 28. 2004.
Dunedin, New Zealand: Australian Computer Society,
Inc.

[75] Craig S. Tashman and W. Keith Edwards. LiquidText:
a flexible, multitouch environment to support active
reading. in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2011.
Vancouver, BC, Canada: Association for Computing
Machinery. 10.1145/1978942.1979430.

[76] Stephen Voida and Elizabeth D. Mynatt. It feels better
than filing: everyday work experiences in an activity-
based computing system. in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.

2009. Boston, MA, USA: Association for Computing
Machinery. 10.1145/1518701.1518744.

[77] Jagoda Walny, Constructible Interaction. Chapter 11
of "Thinking with Sketches: Leveraging Everyday Use
of Visuals for Information Visualization". 2016,
University of Calgary, Calgary, AB.

[78] M. Weiser, The Computer for the 21st Century.
Scientific American, 1991(September): p. 94-104.

[79] Haijun Xia, Ken Hinckley, Michel Pahud, Xiao Tu and
Bill Buxton. WritLarge: Ink Unleashed by Unified
Scope, Action, & Zoom. in Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems. 2017. Denver, Colorado, USA: ACM.
10.1145/3025453.3025664.

[80] Jishuo Yang and Daniel Wigdor. Panelrama: enabling
easy specification of cross-device web applications. in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '14). 2014. ACM,
New York, NY, USA.
http://doi.acm.org/10.1145/2556288.2557199.

http://doi.acm.org/10.1145/2556288.2557199

	SurfaceFleet: Exploring Distributed Interactions Unbounded from Device, Application, User, and Time
	Frederik Brudy† 1,2, David Ledo† 1,3, Michel Pahud1, Nathalie Henry Riche1, Christian Holz1,4, Anandghan Waghmare1,5, Hemant Bhaskar Surale1,6, Marcus Peinado1, Xiaokuan Zhang1,7, Shannon Joyner1,8, Badrish Chandramouli1, Umar Farooq Minhas1, Jonatha...
	1Microsoft Research, Redmond, WA, United States; 2University College London, London, UK; 3University of Calgary, AB, Canada; 4ETH Zürich, Switzerland; 5Georgia Institute of Technology, GA, USA; 6University of Waterloo, Canada; 7Ohio State University,...
	ABSTRACT
	Author Keywords

	CSS Concepts
	INTRODUCTION
	FOUR CORNERSTONES OF UNBOUNDEDNESS
	Usage Scenario

	RELATED WORK
	Devices Unbound: Cross-Device Interaction
	Cloud-Capable UI Elements as First-Class Objects

	Apps Unbound: Across the OS and Existing Programs
	Users Unbound: from Individual to Collaborative
	Time Unbound: Deferred Action, Multiple Fulfillment
	Existing Online Sharing Apps and Web Services
	Summary

	SURFACEFLEET SYSTEM & TOOLKIT
	Device Unbound: Migration as Cross-Device Fail-Over
	Application Unbound: Cross-Application Functionality
	Time Unbound: Interaction-Driven Promises
	User Unbound: Social Protocol and Organizational Trust

	INTERACTION TECHNIQUES in SURFACEFLEET
	Applets and the SurfaceFleet Taskbar
	Five Mechanisms for Cross-Device Interaction
	Portfolios: Unbinding from Devices and People
	Interaction Promises: Unbinding from Time
	Tools—User Operations Across Devices & Applications
	Examples of Tools as Generic Commands

	Media Primitives—Content Unbound from Applications
	Containers: Collections of Media Primitives

	Discussion
	Conclusion AND FUTURE WORK
	Acknowledgments
	REFERENCES

