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Abstract
This paper addresses critical security vulnerabilities in Extended Re-
ality (XR) user interfaces (UIs) by developing systematic detection
mechanisms. Recent research has identified that XR applications
are susceptible to UI-based attacks due to insecure properties like
spatial overlap and invisible boundaries. These vulnerabilities arise
from XR’s unique characteristic of integrating digital content into
the physical world, where multiple virtual elements from differ-
ent sources must coexist in the same perceptual space. We present
a detection framework that helps developers identify potentially
malicious UI elements through continuous runtime analysis. Our
framework implements two key detection mechanisms: a same-space
detector that identifies overlapping UI elements that could enable
clickjacking attacks, and an invisibility detector that discovers hid-
den boundary objects that could block legitimate interactions. We
implement this framework as a Unity plugin and demonstrate its
effectiveness through comprehensive evaluation across multiple at-
tack scenarios. Our results show that the framework successfully
detects both same-space and invisibility attacks while maintaining
acceptable performance overhead. This work represents a significant
step toward securing XR applications against UI-based attacks and
provides developers with practical tools to identify and mitigate
these vulnerabilities during development and runtime.
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• Security and privacy → Mobile platform security; Software
security engineering.
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1 Introduction
Augmented Reality (AR) and Virtual Reality (VR) are transforming
how humans interact with digital information: AR overlays digital
content onto the physical world, while VR creates fully immersive
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digital environments. AR and VR are collectively referred to as Ex-
tended Reality (XR). The global XR market is expected to reach a
market worth of $472.39 billion by 2029 [1]. This significant market
expansion demonstrates the widespread integration of XR technolo-
gies across diverse domains. These technologies have found critical
applications in education for interactive learning environments [2],
healthcare for surgical training and patient care [3], manufacturing
for process optimization [4], retail for enhanced shopping experi-
ences [5], real estate for virtual property tours [5], remote work for
team collaboration [6], and industrial design for prototyping [4].
This broad adoption indicates a clear transition of XR from niche
applications to essential tools in modern computing environments.

XR systems fundamentally alter user interaction with digital
content through immersive environments. This immersive nature
introduces unique security challenges that differ from traditional
computing interfaces. While conventional displays limit digital con-
tent to a screen, XR user interfaces (UIs) integrate digital elements
throughout the user’s field of view. This integration creates novel
attack vectors that exploit human perception and spatial awareness.
Attackers can manipulate virtual objects in three-dimensional space
to deceive users, potentially triggering unintended actions or expos-
ing sensitive information. The security challenges are amplified by
modern XR applications’ modular architecture, where content from
multiple sources, including third-party components, must coexist
within the same perceptual space. This multi-source integration com-
plicates UI integrity maintenance and trust boundary establishment.

Recent research by Cheng et al. [7] has systematically investi-
gated security vulnerabilities specific to AR user interfaces. Their
work examines a threat model involving interactions between multi-
ple entities within AR UIs, particularly focusing on scenarios where
third-party components (such as external libraries) embedded within
AR applications may attempt to compromise application security, or
vice versa. Through their analysis, they identified several critical UI
vulnerabilities. Two notable examples demonstrate the severity of
these threats: i) The same-space attack involves attackers taking
advantage of spatial ambiguity by placing several virtual objects
at the same 3D location, facilitating clickjacking attacks that mis-
lead users into unintended actions. ii) The invisible attack entails
attackers encapsulate AR objects within invisible 3D boundaries to
perform denial-of-service attacks, thereby obstructing user access
to legitimate interface components. The researchers validated these
attack vectors across major AR platforms and devices, indicating the
widespread susceptibility of these vulnerabilities.

In this paper, we found that the attacks are also applicable to VR
scenarios. To address the lack of systematic defense mechanisms
against these UI-based security threats, we propose an insecure UI
scanner that helps developers identify potentially malicious UI ele-
ments. Our approach performs continuous runtime analysis of XR
scenes through periodic scanning to detect suspicious UI properties.
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The scanner implements automated detection mechanisms that ex-
amine spatial relationships and visibility properties of XR objects,
alerting users to potential security issues. We implement this scanner
as a Unity plugin with two main detection goals: same-space object
detection for identifying overlapping UI elements that could enable
clickjacking attacks, and invisible object detection for discovering
hidden boundary objects that could block legitimate interactions.
While our implementation targets Unity due to its widespread use in
XR development, our approach is adaptable to other XR frameworks.

We systematically evaluated our scanner’s performance using a
Meta Quest 2 headset connected to a Dell G15 desktop computer.
Our evaluation methodology involved running the scanner across VR
scenes while varying two key parameters: scanning frequency and
scene complexity (number of objects). Results demonstrate that CPU
utilization, GPU utilization, and memory consumption remain stable
across test conditions. The primary performance impact manifests
in frame rate reduction, which correlates with increased scanning
frequency and scene complexity.
Contributions. This paper makes the following key contributions:
• We design a scanner that detects UI-based vulnerabilities in XR

applications by identifying same-space and invisible attacks.

• We create a Unity plugin that implements our detection mech-
anisms and evaluate its effectiveness through controlled experi-
ments in VR environments.

• We identify key research directions including performance opti-
mization, broader application testing, and empirical user studies
to advance XR security.

2 Background and Related Work
2.1 UI Security in 2D Displays
Traditional devices such as desktops or smartphones have a 2D flat
surfaces for display, which suffer from clickjacking and UI redress-
ing attacks that can manipulate users into triggering unintended
actions through deceptive layering or hidden elements [8, 9]. Mobile
platforms face additional risks such as tapjacking [10] and overlay
attacks [11], where the limited size of touchscreens allows malicious
components to intercept input or disguise interface elements [12, 13].
Defensive methods in 2D environments include framebusting [14]
techniques designed to stop unauthorized framing of web content.
Security tools have been created to address mobile-specific risks and
reduce exposure to overlay-based manipulation [15, 16].

2.2 Security Issues in XR
There is an emerging awareness of security and privacy concerns
within XR systems. Specifically, recent work has highlighted side-
channel vulnerabilities in XR devices, demonstrating that motion
sensors in head-mounted displays and controllers can inadvertently
leak sensitive information. Such leakage enables various attacks like
key stroke inference using motion data [17–20], acoustic signals [21],
network traffic [22], Wi-Fi signals[23] and user movements [24].
Collectively, these works indicate that beyond improving function-
ality and user experience, XR platforms introduce new and often
overlooked vectors for information leakage. To mitigate such threats,
researchers have mainly adopted differential privacy noise injection
for motion data [25–28] to reduce the attack accuracy.

UI Security in XR. Unlike traditional 2D interfaces, where users in-
teract through external screens, XR immerses users inside interactive
three-dimensional environments. Interaction occurs through natural
inputs such as gaze, gesture, and voice rather than clicks or taps,
introducing new security and privacy challenges. Virtual elements
can blend seamlessly with the real or virtual environment, making
it difficult to distinguish safe content from malicious interference.
Attackers might inject fake objects, alter shared cues, or spoof entire
scenes to mislead participants [29]. For example, a fake warning in
AR might resemble a system alert floating in your space, or in VR, a
pop-up could mimic a trusted app. Malicious buttons or menus might
appear as legitimate parts of the system but perform harmful actions.
Research works [7, 30] have focused on the security of the user inter-
face in XR and how an attacker can exploit the security properties of
the user interface. AdCube [31] was introduced to address ad frauds
within WebXR environments and serves as a defense mechanism
against malicious advertising activities. Cheng et al. [7] have identi-
fied specific UI properties that introduce vulnerabilities on modern
AR platforms. A concurrent work by Xiu et al. [32] proposed a way
for detecting obstruction attacks for augmented reality using vision
language models. Their focus is to detect overlaps between virtual
and physical objects; however, we focus on detecting same-space
and invisible virtual objects to address the attacks proposed in [7].

3 Motivation
Recent research by Cheng et al. [7] has identified critical security
vulnerabilities in AR user interfaces that stem from specific UI
properties. Through systematic analysis across major AR platforms,
they characterized three key security properties that can lead to user
misperception and potential attacks: 1) Same-Space Scenario: A
condition where multiple virtual elements share identical spatial
coordinates in the AR environment; 2) Invisibility Scenario: A situa-
tion where AR objects are rendered with full or partial transparency
while maintaining interaction capabilities; and 3) Synthetic Input
Scenario: The ability for programmatic systems to generate artificial
inputs that mimic genuine user interactions. Their research demon-
strated that malicious actors can exploit these properties to execute
various attacks including clickjacking, denial-of-service, and input
forgery. Through proof-of-concept implementations on widely-used
AR platforms such as ARKit, ARCore, HoloLens, Oculus, and We-
bXR, they established that these vulnerabilities represent concrete
security risks rather than theoretical concerns.

3.1 Scope
Building on their findings, our work focuses on developing detec-
tion mechanisms against the Same-Space and Invisibility scenarios
(explained below), and we leave the investigation of Synthetic Input
scenarios for future work. While the presence of same-space or in-
visibility properties alone does not conclusively indicate malicious
intent, these conditions create opportunities for attackers to exploit
user perception and interaction patterns.
• Same-Space Scenario: This vulnerability occurs when multiple

virtual objects occupy identical spatial coordinates in an XR envi-
ronment. The objects may share identical geometric properties,
resulting in complete visual overlap. An attacker can exploit this
spatial ambiguity by positioning a malicious interactive object at
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the exact coordinates of a legitimate UI element, causing users to
unknowingly interact with the malicious object rather than their
intended target.

• Invisibility Scenario: This vulnerability stems from XR system’s
handling of transparent virtual objects. While these objects may
be partially or fully invisible to users, XR platforms typically
maintain their full interactive capabilities, including input event
handling and collision detection. This creates a security risk where
attackers can deploy transparent interactive layers over legitimate
UI elements. These invisible layers can intercept user interactions
intended for underlying objects, effectively hijacking the input
without any visual indication to the user.

3.2 Threat Model
Our threat model focuses on XR applications that incorporate third-
party software components, such as external libraries and plugins,
which share the same UI space as the main application. This model
aligns with prior work by Cheng et al. [7], where third-party com-
ponents embedded within a legitimate XR application may exhibit
malicious behavior. We aim to build a defense mechanism for the
developers to use, so that such insecure UI properties can be captured
and mitigated at runtime.

4 Insecure UI Property Scanner
To address the two insecure UI scenarios, we develop runtime detec-
tion mechanisms that enable developers to identify potentially dan-
gerous UI properties during application execution. We chose runtime
dynamic detection instead of static analysis, as many UI properties
depend on runtime context, such as dynamic layouts, user inputs, or
framework-driven rendering, which cannot be fully inferred from
code alone through static analysis. Our insecure UI property scanner
continuously monitors the application’s UI state and, when suspi-
cious patterns are detected, provides immediate alerts and mitigation
options to protect users from potential exploitation.

The high-level idea of our scanner is to periodically checking
the objects rendered in the scene, and alert the user when insecure
UI properties related to the two scenarios (§ 3.1) are detected. The
design of our scanner is shown in Figure 1. When the VR application
is running, our scanner will first identify all the object types and their
properties, such as coordinates and visibility attributes ( 1 ). Then, it
will run the two detectors designed for detecting the two scenarios
( 2 ). When issues are detected, the objects that contain insecure UI

properties will be highlighted, and information will be sent to the
user ( 3 ).

The scanner will be run at a fixed interval determined by the
application developer. The scanner can be embedded in any XR
applications to perform the detection. Our scanner was implemented
within the Unity engine using C# scripts compatible with the Univer-
sal Render Pipeline. Scene scanning is performed at regular intervals,
during which all Objects including those marked as inactive are eval-
uated against the invisibility and overlap criteria. Note that while
our implementation is based on Unity, our design can be easily ex-
tended to other XR platforms. In the following, we explain how we
implemented our scanner.

4.1 Object Identification
The first step of our scanner is to identify all objects. To do so, The
scanner gathers every Game Object in the scene, both active and
inactive. For each object, it accesses the GameObject reference, its
spatial information, its Renderer and materials, its MeshFilter, and
its Collider. The spatial information and Collider data are used to
determine the object’s coordinates and whether multiple objects
occupy the same space (for the same-space scenario). The Renderer,
MeshFilter, and material properties are used to determine whether
an object is invisible (for the invisibility scenario).

4.2 Object Detection
We detect two types of objects: objects occupying the same space
(i.e., overlapping), and objects that are invisible.
Same-space object detection. After we have identified all objects
and their properties, we detect same-space objects based on pairwise
comparisons of identified objects in the scene. The steps of this
procedure are detailed in algorithm 1. If both objects contain valid
Collider components, we use Unity’s Bounds.Intersects function
to check for spatial intersection between their bounding boxes. In
the absence of colliders, we implemented a fallback mechanism that
checks whether the objects’ positions lie within a small threshold
distance (e.g., 0.05 units), which indicates a likely overlap. This
method ensures coverage across objects with and without colliders,
increasing the robustness of detection in varied scene configurations.
Invisible object detection. Invisibility detection is implemented
using a rule-based approach that evaluates various object render-
ing properties to identify elements that are fully or partially hidden
from the user’s view. The steps used for Invisibility detection is
detailed in algorithm 2. We developed these rules by consulting
Unity documentation [33] and performing extensive empirical test-
ing of parameters, such as material alpha values, shader settings, and
renderer states. These rules are designed to cover a wide range of
techniques, both intentional and unintentional, used to hide objects
in XR environments. Based on these rules, an object is classified as
invisible if it meets at least one of the following conditions:

• a disabled Renderer component;
• alpha values below a visibility threshold of 0.05 in properties

such as _Color.a, _Alpha, or _Opacity;
• a material explicitly listed by the developer as invisible;
• shader names containing keywords such as transparent,
fade, or invis;
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Algorithm 1: Same-space Object Detection
Input: GameObjects a, b
Output: true if a and b overlap, false otherwise
aCol← a.GetComponentCollider;
bCol← b.GetComponentCollider;
if aCol ≠ null and bCol ≠ null then

if aCol.bounds.Intersects(bCol.bounds) then
return true

else
d← Vector3.Distance(a.position, b.position);
if d < 0.05 then

return true
return false

(a) Before Detection (b) After Detection

Figure 2: An example of same-space object detection.

(a) Before Detection (b) After Detection

Figure 3: An example of invisible object detection. In (a), the
object outline was plotted in green for demonstration purposes.

• a render queue value above a certain threshold1;
• use of the Unity Standard Shader in transparent mode;
• a MeshFilter component without an assigned mesh.

4.3 Object highlighting and Information Sharing
After the detection script runs, we highlight the objects which are
invisible and overlapping so that the user can distinguish and be
aware. Figure 2 and Figure 3 visually illustrate scenes before and
after applying detection. We have also developed a floating UI that
is rendered within the XR scene and it updates periodically to reflect
current detection metrics. It shows the total number of scene objects,
the count of invisible objects, and the number of objects that occupy
the same space (top left corner in Figure 2b and Figure 3b). The
interface is positioned to follow the user’s head movement while
remaining in a fixed location within the field of view.

1Based on our empirical analysis, a value >=2500 will make an object invisible.

Algorithm 2: Invisibility Detection
Input: A scene object o with components: Renderer,

Materials M = {m1,m2, . . . ,mn}, Shader, MeshFilter
Output: Boolean value indicating whether o is invisible
if Renderer component of o is disabled then

return true
foreach material m ∈M do

if Alpha(m) < 0.05 and RenderQueue(m) > 2500 then
return true

if m ∈ InvisibleMaterialList then
return true

if ShaderName(m) contains “transparent”, “fade”, or
“invis” (case-insensitive) then

return true
if ShaderName(m) = “Standard” and
RenderingMode(m) = “Transparent” then

return true

if o has a MeshFilter component and Mesh(o) is null then
return true

return false

5 Evaluation
We evaluated our scanner (C# script) on a set of VR scenes designed
to simulate typical VR environments. We use an Meta Quest 2
device connected to a Dell G15 desktop equipped with an AMD
Ryzen 5 5600H processor with Radeon Graphics (6 cores), 16 GB
of RAM, and an NVIDIA GeForce RTX 3050 GPU. For evaluating
our scanner, we ran our script on VR scenes while varying both the
execution frequency and the number of objects in the scene. The
script scanned the entire scene at regular intervals to detect invisible
and overlapping objects. We monitored CPU usage, GPU usage,
memory consumption, and frame rate throughout the experiments
using Unity’s built-in profiling tools.

5.1 Same-space Object Detection
Execution frequency. We measured frame rates with object counts
of 350, 500, and 1000 while running the scanner with frequency
between 0 to 100 Hz. When the scanner was first enabled at 0.01s,
FPS dropped sharply for all object counts, as illustrated in Figure 4a.
Specifically, with 350 objects, FPS decreased from about 450 FPS to
around 20 FPS; with 500 objects, it fell from approximately 330 FPS
to around 10 FPS; and with 1000 objects, FPS plummeted from about
200 FPS to near 5 FPS. As the interval between executions increased,
the FPS gradually recovered. At 2Hz frequency, FPS increased to
about 410 FPS with 350 objects, about 290 FPS with 500 objects,
and about 75 FPS with 1000 objects. Across all frequencies, larger
object counts consistently produced lower FPS. GPU, CPU, and
RAM did not show significant changes during these tests.
Objects count. Figure 4b shows the FPS trends across increasing
object counts with updated data. At 20 Hz frequency (0.05s interval),
FPS begins at 684 and remains consistently high across all object
counts. Even at 500 objects, FPS stays at 461, with only small fluc-
tuations throughout. This indicates stable performance and efficient
handling of frequent updates. At 10 Hz frequency (0.10s interval),
FPS starts higher at 739, with moderate variation across the object
range. It dips slightly in some places but remains above 487 FPS at
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Figure 4: Analysis of same-space object detection.

500 objects, showing reliable performance under medium-frequency
updates. The 5Hz frequency (0.20s interval) also maintains strong
performance, starting at 762 and ending at 499 FPS at 500 objects.
FPS remains steady across all counts, with minor dips and recoveries.
Overall, all three intervals maintain high and stable frame rates, with
minimal degradation as object count increases, indicating that the
system handles invisibility detection efficiently even under load.

5.2 Invisible Object Detection
Execution frequency. As illustrated in Figure 5a, when the scanner
was disabled, all configurations consistently achieved approximately
625 FPS. However, enabling the scanner caused a drop in FPS,
which then remained stable across all tested frequencies from 0 to
100Hz. The impact of the scanner on FPS was directly related to the
number of objects in the scene: with 350 objects, the FPS dropped
to roughly 530–540; with 500 objects, the FPS stabilized around
455–465; and with 1000 objects, the FPS remained at approximately
265–275. These results indicate that, while the frequency itself did
not cause further FPS variation, the scanner’s performance degrades
considerably in more complex scenes. GPU, CPU, and RAM usage
remained roughly the same in all cases.
Objects count. Figure 5b illustrates how FPS changes with increas-
ing object counts across different frequency. At 20 Hz frequency
(0.05s interval), FPS starts high at 677 but steadily decreases, drop-
ping significantly from around 540 FPS at 75 objects to just 11
FPS at 500 objects, indicating a severe performance drop. At a 10
Hz frequency (0.10s interval), FPS declines more gradually at first,
maintaining above 350 FPS up to 325 objects, before sharply falling
to 42 FPS at 500 objects. The 5 Hz (0.20s interval) frequency interval
shows the most stable performance, with a gentle FPS decline from
677 down to 243 FPS at 500 objects, suggesting that less frequent
scanner execution effectively maintains higher FPS under heavy
object loads.

6 Conclusion and Future work
In this work, we presented the first systematic approach for detecting
insecure UI properties in XR platforms. Our key contribution is an

insecure UI property scanner implemented as a Unity plugin that con-
tinuously monitors XR applications at runtime. The scanner focuses
on detecting two insecure UI properties: spatial overlap between
objects that could enable clickjacking attacks, and invisible bound-
ary objects that could block legitimate user interactions. Through
systematic evaluation varying both detection frequency and scene
complexity, we demonstrated that our scanner can effectively iden-
tify these vulnerabilities while quantifying its performance overhead.

Our research opens several promising directions for future investi-
gation. First, the current scanning approach of periodically checking
the entire scene at fixed intervals introduces unnecessary computa-
tional overhead. A more efficient solution would be to implement
incremental scanning that only processes objects that have changed
since the last scan. Second, our evaluation was limited to a single
test scene, which may not capture the full range of real-world XR
applications. Future work should evaluate the scanner across diverse
XR applications with varying levels of scene complexity and inter-
action patterns. Third, a formal user study would provide valuable
insights into both the practical utility of our detection system and
help determine optimal scanner configurations that balance detec-
tion effectiveness with user experience. Such a study could inform
guidelines for detection frequency and visualization approaches that
minimize disruption while maintaining security.
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